6G mobile network infrastructure optimization
Abstract
The article presents an in-depth analysis of a comprehensive approach to ensuring the energy efficiency of hardware for sixth-generation (6G) networks as one of the key factors in the sustainable development of telecommunications infrastructure under the growing demand for high-speed, reliable, and environmentally balanced communication services. The study examines concepts and practical solutions aimed at reducing energy consumption while maintaining or improving the performance of network components, including base stations, user terminals, and data transmission and processing systems. The necessity of employing artificial intelligence (AI) and machine learning (ML) algorithms for dynamic equipment operation management, load forecasting, and adaptive real-time power consumption regulation is substantiated. Prospects for integrating renewable energy sources, energy harvesting technologies, and wireless power transfer (WPT) systems are outlined, enhancing node autonomy and reducing dependence on conventional energy resources. The role of 6G in enabling high-precision environmental parameter monitoring, ecological mapping, and public environmental oversight through large-scale sensor networks and holographic communications is highlighted. A review of state-of-the-art channel modeling methods and signal propagation characteristics in the terahertz band is provided, taking into account multipath effects, massive MIMO utilization, intelligent beamforming, hybrid antenna arrays, and adaptive modulation and coding schemes. Strategies for optimizing performance and quality of service (QoS) indicators are defined, including the integration of AI/ML solutions, edge/fog computing, cognitive spectrum management, network slicing, and service-oriented architectures. The paper analyzes technical, regulatory, and environmental challenges of 6G deployment, such as standardization, cybersecurity resilience, frequency resource harmonization, carbon footprint reduction, and life-cycle energy efficiency of equipment. Directions for interdisciplinary research are identified, focusing on the development of adaptive, fault-tolerant, scalable, and energy-efficient next-generation telecommunication systems capable of meeting the growing needs of the digital economy and society. The obtained results can be applied in the formation of green communication concepts, the design of energy-efficient network architectures, the development of power consumption management strategies, and the implementation of technologies that combine high throughput, low latency, flexible resource management, and environmental responsibility.
References
2. Ajanthaa, L., Seranmadevi, R., Sree, P.H., and Tyagi, A.K. (2024). Engineering applications of artificial intelligence. In: Enhancing Medical Imaging with Emerging Technologies.
3. Tyagi, A.K., Kukreja, S., Richa, and Sivakumar, P. (February 2024). Role of Blockchain Technology in Smart era: a review on possible smart applications. Journal of Information & Knowledge Management. https://doi.org/10.1142/S0219649224500321.
4. Васильківський М. В. Дослідження архітектури штучного інтелекту для інфокомунікаційних мереж 6G [Текст] / М. Васильківський, Г. Варгатюк, О. Болдирева // Вимірювальна та обчислювальна техніка в технологічних процесах. – 2022. – № 4. – С. 62–70.
5. Оцінювання параметрів радіотрактів інфокомунікаційних систем 5G/6G [Текст] / М. В. Васильківський, А. Коломієць, М. Будаш // Вісник Хмельницького національного університету. Серія «Технічні науки». – 2022. – № 6. – С. 53–60.
Abstract views: 15 PDF Downloads: 5