Development of an application for interaction with a computer using gestures using Computer Vision technologies
Abstract
The work investigates methods for contactless computer control using hand gestures based on computer vision and machine learning technologies. Examples of the application of technologies in various areas of life are given, where they show superior efficiency and convenience over traditional interfaces for interacting with the system. The tools and instruments used in the development of the software application are described. A modular architecture of the system is proposed that provides real-time gesture recognition, including image segmentation, tracking of key hand points and classification of movements. Functionality for moving the cursor, performing left and right clicks, double clicks, scrolling pages and adjusting the volume is implemented. The result of the work is a software product that supports moving the mouse cursor, left and right clicks, double clicks, dragging objects, scrolling and adjusting the volume. Both the functioning of the main application commands and the operation on different hardware configurations in real time were tested. Solutions for further improvement and expansion of the software functionality were proposed.
References
2. P. J. Ezigbo, O. C. Nosiri, E. S. Mbonu, V. Ofor, J. Obichere. Hand Gesture Recognition and Control for Human-Robot Interaction Using Deep Learning. International Journal of Electrical and Electronic Engineering&Telecommunications.Vol. 12.No. 6.November 2023.P. 433-441.
3. Міронов Н. О., Самчук Л. М. Дослідження характеристик та медотології системи розпізнавання жестів для безконтактної взаємодії з комп’ютером з використанням технологій ComputerVision. Комп’ютерно-інтегровані технології: освіта, наука, виробництво, Луцьк, 2024. № 57. С. 115-118.
4. S. Shriram, B. Nagaraj, J. Jaya, S. Shankar, P. Ajay. Deep Learning-Based Real-Time AI Virtual Mouse System Using Computer Vision to Avoid COVID-19 Spread. Journal of Healthcare Engineering. 2021. P. 4-7.
5. Mahmoud, Nourelhoda, Fouad, Hassan, Soliman, Ahmed. Smart healthcare solutions using the internet of medical things for hand gesture recognition system. Complex&IntelligentSystems. 2020. P. 7-12.
Abstract views: 5 PDF Downloads: 2