Method of the MCTS Tree Search Method Parallelization

Keywords: Monte-Carlo tree search method, MCTS, MCTS parallelization methods, parallel and distributed computer systems, resource model for computer system.

Abstract

The method proposed in this article is based on two directions of further development of Monte Carlo tree search method (MCTS): the direction of improving the theoretical approaches of this method and the direction of parallelization of the search process by this method. Parallelization of MCTS search is performed on the basis of previously proposed author's variant MCTS-TSC (Monte-Carlo Tree Search with Tree Shape Control) with search tree shape control, a generalized graph-structural heterogeneous model of dynamic parallelization of Monte Carlo tree search, as well as a resource model of a heterogeneous distributed computer system with local connections and its graph. The proposed parallelization method takes into account all three known MCTS hardware-independent parallelization methods: root, tree, and leaf parallelization and consists of seven stages. The fundamental difference between the proposed method and the methods of other researchers is a more intelligent decision-making about the type of parallelization and the degree of parallelization at the vertices of the search tree at stages 1-3, which is made both on the basis of available hardware resources and on the basis of the current shape of the search tree in order to direct further building a tree in the desired direction (in depth or width), while other researchers, as a rule, perform only the implementation of root parallelization between several computers, which is strictly tied to a specific configuration of the computer system, the implementation of tree parallelization or implementation of leaf parallelization on GPU boards. The proposed method of MCTS search parallelization ensures more efficient loading of available hardware resources and allows both speeding up the search process as a whole and increasing the efficiency of MCTS search.

References

1. Cameron Browne. A Survey of Monte Carlo Tree Search Methods / Cameron Browne, Edward Powley, Daniel Whitehouse, and others // IEEE Trans. on Computational Intelligence and AI in Games. – vol. 4. – no. 1. – March 2012. – P. 1-49.
2. Марченко О.І. Класифікація способів реалізації та покращення пошуку по дереву методом Монте-Карло / Марченко О.І., Марченко О.О., Орлова М.М. // Штучний інтелект. – 2016. – №2(72). – С. 59-69.
3. Oleksandr I. Marchenko. Monte-Carlo Tree Search with Tree Shape Control. / Oleksandr I. Marchenko, Oleksii O. Marchenko // 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON). Conference Proceedings. May 29 – June 2, 2017., Kyiv, Ukraine. – 2017. – P. 812-8173.
4. Марченко О.О. Модель динамічного розпаралелення пошуку в дереві методом Монте-Карло для grid-систем. / Марченко О.О., Марченко О.I. // Системний аналіз та інформаційні технології: матеріали 19-ї Міжнародної науково-технічної конференції SAIT 2017, Київ, 22 – 25 травня 2017 р. / ННК “IПСА” НТУУ “КПI ім. Ігоря Сікорського”. – К.: ННК “IПСА” НТУУ “КПI ім. Ігоря Сікорського”, 2017., с.213-214. – Текст: укр.
5. Марченко О.О. Модель ресурсів неоднорідної розподіленої комп’ютерної системи з локальними зв’язками та її граф. / Марченко О.О., Марченко О.І. // Комп’ютерно-інтегровані технології: освіта, наука, виробництво. – 2020. – № 39. – с.83-88.

Abstract views: 46
PDF Downloads: 47
Published
2024-06-16
How to Cite
Marchenko , O. (2024). Method of the MCTS Tree Search Method Parallelization. COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, (55), 137-142. https://doi.org/10.36910/6775-2524-0560-2024-55-17
Section
Computer science and computer engineering