MATLAB GUI for modeling self-organization processes in biosystems.
Keywords:
population, dynamics, differential equations, MATLAB program.
Abstract
This article presents a project to develop the MATLAB graphical interface and simulation results that allow both visually and quantitatively assessing the state, functioning, dynamics and nature of the relationships of populations in biosystems.
References
Yablokov Ya. V. Population ecology. -M .: Higher. school., 1987. -303 p.
Sh. Darvin. Autobiography.- New York: Norton, 1958.-120 p.
Malthus T.H. An assay on the principle of population, as it affects the future improvement of society. - Penguin: Harmondsworth, 1978.- pp. 613-637.
Bratus A.S. Dynamic systems and models of biology // A.S. Novozhilov, A.P. Platonov.- M .: Fizmatlit, 2010.-400 p.
Volterra V. The mathematical theory of the struggle for existence.-M .: Nauka, 1976.-288 p.
Trubetskov D. I. Phenomenon of the Lotka-Volterra mathematical model and similar ones. Izvestiya of High Schools. Applied nonlinear dynamics. - 2011. - Vol. 19. - No. 2. - p. 69–88.
Arnold V.I. Hard and soft models // Nature.-1998.- No. 4.-p.3.
Bratus A.S. Mathematical models of the interaction of pollution with the environment / A.S. Mescherin, A.S. Novozhilov // Bulletin of Moscow State University. Ser. Computational Mathematics and Cybernetics.-2001.-Vol.6.-p.140.
Zang V.B. Synergetic economy. Time and Changes in Nonlinear Economic Theory.-M: Mir, 1999.-335 p.
Malkov S.Yu. Social self-organization and the historical process: the possibilities of mathematical modeling. -M: Librocom / URSS, 2009.
Sh. Darvin. Autobiography.- New York: Norton, 1958.-120 p.
Malthus T.H. An assay on the principle of population, as it affects the future improvement of society. - Penguin: Harmondsworth, 1978.- pp. 613-637.
Bratus A.S. Dynamic systems and models of biology // A.S. Novozhilov, A.P. Platonov.- M .: Fizmatlit, 2010.-400 p.
Volterra V. The mathematical theory of the struggle for existence.-M .: Nauka, 1976.-288 p.
Trubetskov D. I. Phenomenon of the Lotka-Volterra mathematical model and similar ones. Izvestiya of High Schools. Applied nonlinear dynamics. - 2011. - Vol. 19. - No. 2. - p. 69–88.
Arnold V.I. Hard and soft models // Nature.-1998.- No. 4.-p.3.
Bratus A.S. Mathematical models of the interaction of pollution with the environment / A.S. Mescherin, A.S. Novozhilov // Bulletin of Moscow State University. Ser. Computational Mathematics and Cybernetics.-2001.-Vol.6.-p.140.
Zang V.B. Synergetic economy. Time and Changes in Nonlinear Economic Theory.-M: Mir, 1999.-335 p.
Malkov S.Yu. Social self-organization and the historical process: the possibilities of mathematical modeling. -M: Librocom / URSS, 2009.
Abstract views: 176 PDF Downloads: 225
Published
2019-12-28
How to Cite
Bagniuk, N., KuzmychО., Melnyk, V., Shepelyuk, G., & Chornij, M. (2019). MATLAB GUI for modeling self-organization processes in biosystems. COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, (37), 25-30. https://doi.org/10.36910/6775-2524-0560-2019-37-4
Section
Computer science and computer engineering