Measuring methodologies of geometrical sizes validation and verification in the production conditions.
Abstract
The principles of validation and verification of methods for measuring geometric dimensions in production conditions are described. It is noted that the manufactured part is checked with a measuring device and compared with the standard to check the size specifications and geometric characteristics (actual size and tolerance), and then the deviations are calculated and displayed. A model for setting up the verification process is presented, which schematically shows all the stages of verification. The definition of basic concepts is formed, so validation - verification, in which the requirements are related to the intended use; validation of measurement methods is a process of confirmation, by providing objective evidence, usually obtained experimentally, that the method can be used for a specific purpose, and verification - the provision of objective evidence that the object fully complies with the established requirements. The principle of forming a measurand and a combined standard uncertainty is mathematically substantiated. Describes the Monte Carlo method, which is usually used to approximate the statistical behavior of a measured quantity in situations where the measurement function cannot be found directly. The model of setting up the computer resultant system of geometric measurements is given and the conceptual basis for checking the model of the system of geometric measurements is included, which includes five types of reality (conceptual, logical, typical, experimental, operational). It is noted that the long-term benefits of using a proven model to supplement physical measurement should be balanced with the costs associated with developing a model and model for measuring geometric dimensions in production.
References
Eurachem, Н. (2016). Придатність аналітичних методів для конкретного застосування. Настанова для лабораторій з валідації методів та суміжних питань": за ред. Б. Магнуссона та У. Ернемарка: переклад другого видання 2014 р. Київ: ТОВ" Юрка Любченка.
Почекайлова, Л. П. (2013). Валідация методик випробувань. Системи обробки інформації, (3), 85-89.
Браилов, А. Ю., Панченко, В. И., & Косенко, С. И. (2019). Анализ геометрической модели определения параметров недоступной точки объекта. Modern problems of modeling, (14), 38-47.
Raffaeli, R., Mengoni, M., Germani, M., & Mandorli, F. (2013). Off-line view planning for the inspection of mechanical parts. International Journal on Interactive Design and Manufacturing (IJIDeM), 7(1), 1-12.
Hovind, H., Magnusson, B., Krysell, M., Lund, U., & Mäkinen, I. (1). Internal quality control-handbook for chemical laboratories. Nordtest Report Tr, 569.
Thompson, M., Ellison, S. L., & Wood, R. (2002). Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure and applied chemistry, 74(5), 835-855.
MacKinnon, D., Carrier, B., Beraldin, J. A., & Cournoyer, L. (2013). GD&T-based characterization of short-range non-contact 3D imaging systems. International journal of computer vision, 102(1-3), 56-72.
Van Loco, J., Elskens, M., Croux, C., & Beernaert, H. (2002). Linearity of calibration curves: use and misuse of the correlation coefficient. Accreditation and Quality Assurance, 7(7), 281-285.
Magnusson, B. (2003). Handbook for calculation of measurement uncertainty in environmental laboratories.
Lukacs, G., Lockhart, J., & Facello, M. (2012). Non-contact whole-part inspection.
Barbero, B. R., & Ureta, E. S. (2011). Comparative study of different digitization techniques and their accuracy. Computer-Aided Design, 43(2), 188-206.
Minguez, R., Arias, A., Etxaniz, O., Solaberrieta, E., & Barrenetxea, L. (2016). Framework for verification of positional tolerances with a 3D non-contact measurement method. International Journal on Interactive Design and Manufacturing (IJIDeM), 10(2), 85-93.
Shrivastava, A., & Gupta, V. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of young scientists, 2(1), 21-21.
Abstract views: 85 PDF Downloads: 114