Mathematical model of spin photocurrent excitation in of antiferromagnetic isolators nanostructures

Keywords: antiferromagnetic isolators nanostructures, circular photogalvanic effect, magnon spin photocurrents, circularly polarized light, second order light-matter interaction, antisymmetric exchange, complex lattice structures

Abstract

Fundamental principles of circular photogalvanic effect as a result of circularly polarized light probing of metal environment and generation of a direct photocurrent which direction depends on the polarization of light are considered. The peculiarities of the occurrence of the mentioned effect in the structures of antiferromagnetic dielectrics are determined, nonlinearity of the effect is indicated, and further use in opto-spintronics’ data storage and nanodetectors of the electromagnetic field is proposed. Due to necessity of the mathematical apparatus development, the consideration of the spin pulse was transferred from photons to magnons. Thus, it was stated that the circularly polarized electromagnetic field within the model generates a direct magnon spin photocurrent and the direction of the current is determined by the helicity of light. It is shown that the phenomenon of resonance based on general principles of nanophotonics can be represented as the interaction of the second order polarized light-matter interaction. The mathematical model was further adopted in order to take into account the contribution of the geometric organization of antiferromagnetic isolator complex lattice structures and the phenomenon of antisymmetric exchange.

References

Satoh, T., Iida, R., Higuchi, T., Fujii, Y., Koreeda, A., Ueda, H., ... & Ivanov, B. A. (2017). Excitation of coupled spin–orbit dynamics in cobalt oxide by femtosecond laser pulses. Nature communications, 8(1), 1-6.

Němec, P., Fiebig, M., Kampfrath, T., & Kimel, A. V. (2018). Antiferromagnetic opto-spintronics. Nature Physics, 14(3), 229-241.

Valev, V. K., Govorov, A. O., & Pendry, J. (2017). Chirality and Nanophotonics: Chirality and Nanophotonics (Advanced Optical Materials 16/2017). Advanced Optical Materials, 5(16).

Tang, Y., & Cohen, A. E. (2011). Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science, 332(6027), 333-336.

Lovesey, S. W., Collins, J. T., & Collins, S. P. (2019). Superchiral photons unveil magnetic circular dichroism. Physical Review B, 99(5), 054428.

Bliokh, K. Y., Kivshar, Y. S., & Nori, F. (2014). Magnetoelectric effects in local light-matter interactions. Physical review letters, 113(3), 033601.

Canaguier-Durand, A., Hutchison, J. A., Genet, C., & Ebbesen, T. W. (2013). Mechanical separation of chiral dipoles by chiral light. New Journal of Physics, 15(12), 123037.

Starosta, K., Koike, T., Chiara, C. J., Fossan, D. B., & Vaman, C. (2002, April). Chirality and angular momentum coupling in odd-odd nuclei. In AIP Conference Proceedings (Vol. 610, No. 1, pp. 815-819). American Institute of Physics.

Lüth, H., & Ibach, H. (2003). Solid-state physics: an introduction to principles of materials science. Springer-Verlag Berlin Heidelberg.

Proskurin, I., Ovchinnikov, A. S., Kishine, J. I., & Stamps, R. L. (2018). Excitation of magnon spin photocurrents in antiferromagnetic insulators. Physical Review B, 98(13), 134422.

Sharma, S., Blanter, Y. M., & Bauer, G. E. (2017). Light scattering by magnons in whispering gallery mode cavities. Physical Review B, 96(9), 094412.

Johansen, Ø., & Brataas, A. (2018). Nonlocal coupling between antiferromagnets and ferromagnets in cavities. Physical review letters, 121(8), 087204.

Nolting, W., & Ramakanth, A. (2009). Quantum theory of magnetism. Springer Science & Business Media.

Lin, W., Chen, K., Zhang, S., & Chien, C. L. (2016). Enhancement of thermally injected spin current through an antiferromagnetic insulator. Physical review letters, 116(18), 186601.

Takei, S., Moriyama, T., Ono, T., & Tserkovnyak, Y. (2015). Antiferromagnet-mediated spin transfer between a metal and a ferromagnet. Physical Review B, 92(2), 020409.

Khymyn, R., Lisenkov, I., Tiberkevich, V. S., Slavin, A. N., & Ivanov, B. A. (2016). Transformation of spin current by antiferromagnetic insulators. Physical Review B, 93(22), 224421.

Hoffmann, M. C., Khanna, V., & Cavalleri, A. (2010). Noncollinear Broadband Terahertz-pump—Terahertz-probe spectroscopy of semiconductors. International Conference on Ultrafast Phenomena. doi: 10.1364/up.2010.me42.

Hirori, H., Doi, A., Blanchard, F., & Tanaka, K. (2011). Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO 3. Applied Physics Letters, 98(9), 091106.

Kawano, M., & Hotta, C. (2019). Thermal Hall effect and topological edge states in a square-lattice antiferromagnet. Physical Review B, 99(5), 054422.

Okuma, N. (2018). Quantum Theory of Antiferromagnetic Opto-spintronics: Reciprocal and Nonreciprocal Magnons Coupled with Polarized Photons. arXiv preprint arXiv:1805.08226.

Owerre, S. A., Mellado, P., & Baskaran, G. (2019). Photoinduced Floquet topological magnons in Kitaev magnets. EPL (Europhysics Letters), 126(2), 27002.

Matusiak, M., Babij, M., Pomjakushina, E., & Conder, K. (2016). Wiedemann–Franz law in iron‐based superconductor Fe1+ dTe1− xSex. physica status solidi (b), 253(8), 1607-1611.

Kimura, T., Hamrle, J., Yang, T., & Otani, Y. (2005, April). Magnetization switching due to non-local spin injection into small ferromagnetic particle. In 2005 IEEE International Magnetics Conference (INTERMAG) (pp. 133-134). IEEE.

Okubo, S., Ueda, T., Ohta, H., Zhang, W., Sakurai, T., Onishi, N., ... & Sakai, T. (2012). Dzyaloshinsky-Moriya interaction and field-induced magnetic order in an antiferromagnetic honeycomb lattice compound Bi 3 Mn 4 O 12 (NO 3) studied by high-field electron spin resonance. Physical Review B, 86(14), 140401.

Abstract views: 136
PDF Downloads: 181
Published
2020-05-18
How to Cite
Fedotov, V. (2020). Mathematical model of spin photocurrent excitation in of antiferromagnetic isolators nanostructures. COMPUTER-INTEGRATED TECHNOLOGIES: EDUCATION, SCIENCE, PRODUCTION, (39), 105-109. https://doi.org/10.36910/6775-2524-0560-2020-39-18