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Hubal H. M. Construction and study of the system of differential equations that describes oscillatory chemical 

reactions based on diffusion. In the article, the system of non-linear partial differential equations of the second order describing 
oscillatory chemical reactions based on diffusion are constructed and investigated.   
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Introduction. When studying oxidation-reduction self-oscillatory reactions in a flask, it is obvious 

that solution changes its colour simultaneously in the whole flask if there is a sufficient mixing. If the 
reaction goes without intense mixing, then the eye does not notice periodic changes in the colour of the 
solution. Even with weak mixing, the colour of the solution changes synchronously throughout the volume.  

If there would be no oscillations at each point, and the alignment of the initial heterogeneities in the 
concentrations resulting in the spread of the phase difference would only occur due to the thermal diffusion 
of molecules, then establishment of a state with equal concentration of substances in the whole flask would 
continue to be considerably longer. However, due to convection flows and turbulent diffusion [1], when 
mixing the equilibrium of concentrations occurs much faster. For example, as a result of turbulent diffusion, 
the smoke from a cigar in concentrations sufficient to act on a human smell spreads around the room in a few 
seconds, and the effect of only one molecular diffusion would lead to the same result only in a few days.     

As a result of the mixing, the molecules of the reactants pass from one elemental volume to 
neighbouring ones, together with the whole larger volumes of the solution, as well as there are differences 
(larger gradients) of the concentrations that increase the diffusion rate. 

The analysis of oscillatory chemical reactions based on diffusion shows that as a result of the 
redistribution of the molecules of the reactants in space, there is not only the alignment of the initial spatial 
heterogeneities along the amplitude, but also the phases of oscillations in different elemental volumes 
become the same, i.e. there is a mutual synchronization of many connected oscillatory systems in space in 
oscillatory chemical reactions based on diffusion.  

Main part. Consider how we can explain the synchronization of small deviations of concentrations 
from their stationary levels in space.  

Let there be the substance 1P  in surplus in some very small elemental volume. The substance 1P  being 
in surplus, in the process of the reaction the consumption of the substance 1P  is almost invisible. The 
molecules of the substance 1P  with some constant rate 0  turns into the molecules of the substance X (it 
being the zero-order reaction). The substance X turns into the substance Y (it being the second-order reaction; 
the greater the concentration of the substance Y, the greater its rate as indicated by the reverse arrow above Y 
in the scheme given below). The molecules of the substance Y irreversibly decay resulting in the formation 
of the substance 2P  (it being the first-order reaction). 

The kinetic scheme of the periodic oscillatory chemical reaction that goes in a homogeneous 
environment:  

 0 21
,1 2P X Y P

 

where 0 1 2, ,  are constant rates.  
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For simplicity, we denote by 1 2, , ,P P X Y  the concentrations of the corresponding substances. 
Since we consider this chemical reaction in a very small elemental volume, then in this case, we can 

write  

 ( ), ( ).X X t Y Y t   

We write the system of differential equations that describes this reaction 

 

0 1

1 2

2
2

,

,

.

dX XY
dt
dY XY Y
dt
dP Y
dt

 (1) 

Since the first two differential equations do not depend on 2P , then they can be considered separately. 
The first differential equation of this system of differential equations shows that the rate of change of the 
concentration X is determined by the constant rate of formation of the substance ( 0 ) while transforming 1P  
to X  and by decrease while transforming X to Y. The second differential equation of the system of 
differential equations takes into account the increase of Y due to  X and the decrease while transforming Y to 

2P . 
First we find out whether the reaction can go so that the rate of formation 2P can remain constant. This 

is the case when the concentrations X  Y   do not change in time, i.e.  

 0, 0.dX dY
dt dt

 

For these conditions, we obtain the following system of algebraic equations that connect equilibrium 
concentrations X  and Y  from system of differential equations (1): 

 0 1

1 2

0,
0.

XY
XY Y

 

The solution of the system has the form 

 02

1 2
, .X Y  (2) 

Suppose that this reaction can go not only in very small elemental volume (or at a point) where the 
change of the concentration of each substance is synchronous but also in a sufficiently large volume. For 
simplicity, we suppose that this finite large volume is one-dimensional, that is we suppose that the reactor is 
a very narrow tube which has the length l and  the section S (see the scheme of the one-dimensional reactor, 
Fig. 1). This tube has such a small radius that the going of the reaction can be considered synchronous in its 
arbitrary cross-section. Suppose also that the substance 1P  is distributed in surplus throughout its length l. 
Denote  by u the only spatial coordinate, the origin combining with the left end of the tube. Then the right 
end of the tube has the coordinate u l .  

Consider the elemental volume ( )V u  and calculate the balance of the concentrations X and Y in it. It 
is obvious that X and Y are functions of the coordinate and time: 

 ( , ), ( , ).X X u t Y Y u t   

The rate of change of concentrations in the elemental volume ( )V u  is determined by the decrease 
and increase of the concentrations X and Y  as  a  result  of  chemical  transformations and the running of  the 
molecules X and Y  across the boundaries of the elemental volume ( )V u . These boundaries have the 
coordinates u  and u u . 
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Fig.1 

 
By Nernst’s law, the mass of the substance X (or the number of molecules) that penetrates through the 

section of the tube that is, the reactor with the coordinate u u  into the elemental volume ( )V u  for  a  

small period of time from t  to t t  is proportional to the gradient ( , )X u u t
u

 of the concentration of 

the substance X in the direction u  (that is, the increment of the mass u uM  of the substance  X  for time 
t  in the elemental volume ( )V u  due to diffusion through the tube section with the coordinate u u ): 

 ( , ) ,u u
X u u tM D S t

u
  

where D  is the coefficient of diffusion. The value D  is determined by the properties of the dissolved 
substance and the solution and does not depend on the concentration in the large boundaries of its change.  

The following mass passes through the second boundary of the elemental volume ( )V u  with  the  
coordinate u in the direction u (opposite to u  so there is  the minus sign in the formula given below) for  
time from t  to t t  (that is, the increment of the mass uM  of  the  substance   X  for  time  t  in  the  
elemental volume ( )V u  due to diffusion through the tube section with the coordinate u ): 

 ( , ) .u
X u tM D S t

u
  

The total quantity (mass) of the substance X that penetrates the elemental volume ( )V u  through its 
two limits due to diffusion for time t  (that is, the total increment of the mass M  of the substance  X  for 
time t  in the elemental volume ( )V u  due to diffusion) is 

 .u u uM M M   

The corresponding increment of the concentration X  of the substance X inside the volume ( )V u  
due to diffusion is 

 

( , )( , ) ( , )

.
( )

X u tX u u t X u t
M M uu uX D t D t

V u S u u u
  

The rate of change of the concentration of the substance X inside the considerable elemental volume 
due to running of molecules (diffusion) across the boundaries with coordinates ,u u u  at 

0 ( ( ) 0)u V u , 0t : 

 
2

2 20
0

( , ) ( , )lim .
u
t

X X u t X u tv D D
t u u u

  

It is necessary to add the rate of change of the concentration due to chemical transformations to this 
rate (see the first differential equation of system of differential equations (1)): 

l 

l 

0 

S ( )V u  

u  u u  

u  
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 1 0 1 .v XY   

Thus, full rate of change of the concentration of the substance X: 

 
2

1 2 0 1 2
( , ) .X X u tv v v XY D

t u
  

Similarly, we calculate full rate of change of the concentration of the substance Y (taking into account 
the second differential equation of system of differential equations (1)).  

Then the system of differential equations for the rates of change of concentrations in the volume 
( )dV u : 

 

2

0 1 1 2

2

1 2 2 2

,

,

X XXY D
t u
Y YXY Y D
t u

 (3) 

where 1D  and 2D  are coefficients of diffusion for the substances X and Y. 
System of equations (3) is a system of second-order non-linear partial differential equations. 
We linearize system of differential equations (3).  
Taking into account that small deviations x and y from stationary values of concentrations X  and Y  

are the functions u and t, we obtain 

 
( , ) ( , ),
( , ) ( , ).

X u t X x u t
Y u t Y y u t

 (4) 

Substituting expressions (4) and (2) into system of differential equations (3), we obtain the following 
system of differential equations for small deviations x and y: 

  

2
1 0

2 1 1 2
2

2
1 0

1 2 2
2

,

.

x xx y xy D
t u

y yx xy D
t u

 

Neglecting the terms containing values of the second order of smallness xy, we obtain the linearized 
system of differential equations for small deviations of concentrations x and y: 

 

2 2

1 2

2

2 2

2 ,
2

2 ,

x xx y D
t u
y yx D
t u

 (5) 

where the coefficients  and  are expressed in terms of constant rates 0 1,  and 2 :  

 21 0
1 0

2
2 , .  

Note that in system of differential equations (5) unlike system of differential equations (3), variables x 
and y can change their sign (since they are small deviations of concentrations which are either positive or 
negative or zero), whereas variables X and Y, which are concentrations, can only be positive. 

System of differential equations (5) is solved taking into account the boundary conditions at the ends 
of the reactor which are impervious to molecules of the substances X and Y: 
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 0

0

0,

0.

u u l

u u l

x x
u u

y y
u u

  

If initial small deviations of concentrations, at 0t    ( ,0)x u  and ( ,0)y u , from equilibrium are 
defined the same everywhere, then the oscillations will be carried out synchronously throughout the length of 
the reactor and there will be no diffusion along the u-axis because in any neighbouring pair of points  u  and 
u du , the concentration difference at any time is zero. System of differential equations (5) has solutions 
that describe damped oscillations, that is the small deviations ( , )x u t  ( , )y u t  in this case will vary equally 
throughout the length of the reactor. 

If the initial concentrations at different points of the tube differ from each other, then there is diffusion 
that will try to align the concentrations at neighbouring points (or at elemental volumes).  

To study the dependence of the damping of oscillations on the nature of the initial distribution of small 
deviations of concentrations ( ,0), ( ,0)x u y u , it is convenient to define the initial distribution (the initial data) 
in the form of the cosines:  

 
00

00

( , ) cos ,

( , ) cos ,

t

t

nx u t x u
l

ny u t y u
l

  

where 0x  and 0y  are constant numbers.  
Since the differential equations of oscillatory chemical reactions are non-linear, then conclusions 

obtained here are true when the deviations of concentrations ( , )x u t  and ( , )y u t  are  small  compared  to  
stationary values of the concentrations X  and Y . 

If the least initial heterogeneities increase, then oscillations in different phases appear in separate 
elemental volumes of the reactor. Then the colour the liquor of does not change synchronously throughout 
the  volume.  However,  it  is  enough  weak  mixing  (for  example,  convection  flow rate  is  1  cm/s,  the  reactor  
radius  is  1  cm and  10l  cm), so that only initial zero tone can increase, another heterogeneities quickly 
damp and, therefore, the reaction goes synchronously in the whole volume.  

The oscillations of concentrations inside the cell pass in the entire volume of the cell synchronously at 
zero tone if the periods of such oscillations are of the order of several hours and 0,1 . If oscillatory 
heterogeneities appear in the cell, then they are quickly dissolved under the action of only one molecular 
diffusion. The oscillations of concentrations in the cell appear, for example, in dark reactions of 
photosynthesis [3] or in glycolysis [2].  

If the space is heterogeneous, for example, it is heated or illuminated unevenly, then with small these 
heterogeneity the diffusion will also lead to smoothing of heterogeneities and synchronous oscillation modes.  

Conclusions. The system of non-linear partial differential equations of the second order describing 
oscillatory chemical reactions based on diffusion are constructed and investigated.  

The boundary conditions at the ends of the reactor are defined.  
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