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METHOD OF LOCALIZED SIGNAL RECONSTRUCTION IN DYNAMIC ENVIRONMENTS
BASED ON MODIFIED VOLTERRA SERIES

Perets K., Zhuchenko O. Method of localized signal reconstruction in dynamic environments based on modified
Volterra series. The paper presents a comprehensive study and development of an adaptive method for signal reconstruction in
dynamic environments. The proposed method is based on the use of modified Volterra series with temporal constraints, where the
contribution of kernels is limited by local time windows defined using a smoothing Gaussian function. This approach overcomes
the limitations of traditional spectral methods, which, due to the smoothing effect, are unable to accurately reproduce transient or
impulsive features of the signal. To detect critical areas of the signal, an instability indicator is introduced, enabling selective
activation of the time-limited model only in unstable zones. In stable regions of the signal, reconstruction is carried out using a
frequency model, ensuring efficient use of computational resources. Experimental results show an increase in the local coherence
coefficient (ALC) in the range of 10-14%, depending on the spatial localization of critical points and the intensity of temporal
signal changes, as well as a decrease in the mean squared error (MSE) by 12-18% compared to traditional frequency-based
reconstruction methods. The obtained results confirm the effectiveness of the proposed method for signal processing in cognitive
telecommunications systems under complex noise conditions.

Keywords: cognitive telecommunication systems, communication channel, signal, interference, noise immunity, Volterra
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Mepens K. I'., Kyuenxo O. C. MeToa 10ka/1i30BaH0i peKOHCTPYKIU{Il CHTHAJIIB y THHAMIYHOMY cepel0OBUIIi HA 0CHOBi
MoaudikoBanux psiaiB BoabTeppa. Y cTaTTi mpencTaBieHO KOMIUICKCHE MOCHTIIKCHHS, IPHCBSUCHE PO3pOOIi agalTHBHOTO
METOAYy PEKOHCTPYKIii CHUTHANIB y JAWHAMIYHHX CEPEIOBUINAX. 3allpONOHOBAaHWK METOH 0a3yeTbess Ha BHKOPHCTAaHHI
MomudikoBaHUX psaiB BompTeppa 3 dacoBuMEH OOMEKEHHSIMH, 1€ BHECOK siIep OOMEXKYEThCS JIOKATbHUMHU YaCOBUMH BiKHAMU,
BH3HAYEHUMH 32 JOIIOMOTOI0 3IIapKyBabHOI ['aycoBoi ¢ymkmii. Takuii miaxix K03BoJsi€ MOJ0JIATH OOMEXKEHHS TPAAWIiIHHIX
CHEKTPAIBHUX METO/IB, SIKi BHACIIIOK 3I7IaKyBaJbHOTO e(heKTy He 3[aTHI TOYHO BiATBOPIOBATH IIBHIAKOIUIMHHI ab0 iMITyIbCHI
ocoOnmmBOCTI curHaMy. [l BHSBJICHHS KPUTHYHHUX JUITHOK CHTHATy, a camMe oOiacTed 3 pi3KMMH 3MiHaMH a0 JIOKaIbHIMH
aHOMAaIisIMH, B poOOTi BBEACHO IHAMKATOP HECTAOLIBHOCTI, IO O3BOJISE 3/IiIICHIOBATH BHOIPKOBY aKTHBAIIII0 9aCOBO OOMEXKEHOT
MOJIENI JIMIIE B HECTIMKMX 30HaX. Y cTaOUIBHMX AUISHKAX CHTHATY PEKOHCTPYKIiS BUKOHYETHCS 3 BUKOPHCTAHHSM YaCTOTHOI
Mozen, mo 3abe3medye e(heKTHBHE BUKOPHCTAHHS OOYMCIIOBANBFHHX pPeCcypciB. 3a pe3ysbTaTaMH EKCIIEPUMEHTIB OTPHMAaHO
3pocTaHHs KoedinienTa gokanbHoi y3romkeHocTi (ALC) B mianazoni 10-14% B 3a5exHOCTI Bif IPOCTOPOBOT JTOKaIi3aMii KPUTHIHIX
TOYOK Ta IHTEHCHBHOCTI YaCOBHX 3MiH CHTHANy, a TaKO)XK 3MCHIICHHS cepenHbokBanparudHoi moxubku (MSE) ma 12-18% y
MOPIBHSAHHI 3 TPagWIifHUIMKU METOJaMH YacTOTHOI PEKOHCTPYKIii. OTpuMaHi pe3ynbTaTH MiITBEPIKYIOTh e(eKTHBHICTh
3aIpOMOHOBAHOTO METOXLY Yy 3ajadax OOpOOKM CHTHANIB IS KOTHITHBHUX TEJICKOMYHIKAI[IHHUX CHCTEM B YMOBaX CKJIQJHOTO
3aBa/I0BOTO CEPEIOBUIIA.

KiouoBi ci10Ba: KOTHITHBHI TEJIEKOMYHIKAIIiHI CHCTEeMH, KaHAJN 3B’SI3Ky, CHUTHAN, 3aBaJy, 3aBaJIOCTIHKICTh, PAId
Bonbreppu, 9acToTHHI CHEKTP, PEKOHCTPYKIIis, ONTHMI3allis, 9JaCTOTHA Ta YacoBa 00JyacTh, ['aycoBa GyHKIis.

Statement of a scientific problem.

Traditional signal spectral reconstruction methods based on Volterra series of various orders
demonstrate high efficiency in recovering global frequency components, but lose accuracy when processing
signals with pronounced local temporal variations.

The smoothing effect of such models leads to the loss of critical fragments containing key
information, especially in cognitive radio systems. The lack of adaptive approaches capable of combining
frequency-domain reconstruction with localized temporal analysis limits modeling accuracy under
dynamically changing conditions.

Therefore, it is relevant to develop an adaptive signal reconstruction method which, unlike classical
approaches, enables dynamic activation of a localized model within unstable temporal intervals. This
approach preserves essential signal features and enhances reconstruction accuracy in environments with
complex and variable structures.

Research analysis.

The review of existing domestic and international studies on modeling nonlinear signal components
in the frequency domain has revealed that this topic remains insufficiently explored. Studies [1, 4, 5, 12]
have investigated the application of Volterra series for modeling nonlinear systems in the frequency
domain, particularly for isolating dominant frequency interactions and improving spectral reconstruction
accuracy. However, works [6, 10, 11, 14] have not adequately addressed the limitations of spectral models
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in reconstructing signals with pronounced local temporal structures, such as impulsive bursts or abrupt
amplitude transitions. Publications [2, 3, 7, 9] propose methods of localized time-constrained modeling,
including the use of window functions and modified Volterra kernels. Nevertheless, they lack mechanisms
for dynamic adaptation to unstable signal segments. In works [8, 13, 15], indicators such as local energy
and gradient-based activity are examined for anomaly detection, yet their integration into hybrid time-
frequency models remains an open research problem. Therefore, further research is warranted in the areas
of automatic critical point detection, integration of local and global models, and reduction of computational
complexity for practical use in cognitive radio systems.

The purpose of the work.

The purpose of this study is to develop an adaptive signal reconstruction method based on a localized
Volterra series model with dynamic activation, aimed at improving the accuracy of transient feature
recovery in nonstationary environments while reducing computational complexity.

Presentation of the main material and substantiation of the obtained research results.

In the article [12], it was substantiated that second-order Volterra series-based signal reconstruction
in the frequency domain enables effective modeling of dominant frequency interactions while reducing
mean squared error (MSE), even under challenging noise conditions [1,4,5]. However, such spectral models
exhibit inherent limitations when applied to signals with pronounced local temporal structures, such as
impulsive bursts, narrowband disturbances, or abrupt amplitude transitions. In these scenarios,
transformation into the frequency domain often leads to the smoothing of temporal features, which results
in the loss of informative components. This limitation is particularly critical in cognitive radio systems,
where localized signal variations may carry essential information or trigger immediate system response [6].

To enhance the accuracy of local feature reconstruction in the time domain, the proposed method
introduces a constrained Volterra model. Unlike conventional approaches — either linear convolution with
a fixed kernel or nonlinear reconstruction using a full Volterra series model — that process the signal across
the entire time axis, the proposed framework selectively targets regions characterized by high temporal
instability. This strategy not only prevents the smoothing of crucial transient details but also reduces
computational complexity and improves reconstruction quality in dynamically varying signal segments
[10,11].

In [12], the system output was represented using a discretized 7-th order Volterra model. However,
this formulation did nt incorporate the local nature of signal variability. To address this limitation, we
introduce a localized temporal window function w(t, ty, A), which restricts the contribution of the Volterra
kernel to a specific neighborhood around a reference time point ty. The modified localized reconstruction
model is expressed as [3,9]:

R M M r
dloc(to) = 2 2 2 hr(Tl, ---Tr,) nx(to - Ti) ) (U(to — Ti to, A) ’
i=1

r=11,=0 =0
here: x(t) — denotes the input signal;
h, (‘L’l_ Tr) — are the r-th order Volterra kernels;
R is the maximum order of the Volterra expansion;
M is the memory length (maximum lag);
T; are time-lag indices over which the kernel operates;

(D

w(t, ty, A) — is the binary window function defined as: w(t, ty, A) = {é: i; :i _ ig: i 8

The parameter A defines the width of the temporal window centered at t,, effectively allowing the
model to focus only on localized regions of the signal where dynamic features are present. This spatial
restriction enhances the sensitivity of the Volterra model to transient behavior while reducing unnecessary
computation in stable intervals [3,9]. However, to effectively utilize this localized modeling capability, it
is necessary to identify the time points where such transient behavior occurs.

The use of this equation enables the isolation of the temporal context surrounding a suspicious
(critical) point, where significant changes in the signal’s derivatives occur that cannot be effectively
captured through spectral reconstruction.

To identify time moments ty, where it is appropriate to activate the local temporal model, the
proposed method introduces an analytical instability indicator:
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d2x(t) N dx(t) (2)

dt? € dt

K(t) = ,€E KL 1.

The indicator K(t) combines the signal’s curvature and the gradient of local variations, allowing
more precise localization of abrupt transitions and anomalies. The coefficient € ensures a balance between
sensitivity to discontinuities and robustness against noise. When K (t) > k, where k is a detection threshold
(experimentally defined according to the expected level of signal variability), the moment ¢t = t; is
identified as a critical point. Such points are characterized by significant changes in the first or second
derivative of the signal, indicative of sharp transitions, inflection zones, or local irregularities, that cannot
be effectively modeled using global spectral methods. Localized analysis is therefore necessary to preserve
the fidelity of transient features in signal reconstruction [2,6].

In practical scenarios, the second derivative of the signal is approximated numerically using a central
difference scheme, which offers a computationally efficient and stable method for discrete signal
processing. The corresponding finite-difference expression is given by:

d?x(t) _x(t+8) —2x() +x(t - 98) 3)
dt2 52 '

This formulation is introduced by the authors specifically for use in localized signal reconstruction
scenarios, where analytical differentiation is impractical or noisy. The proposed numerical approach
eliminates the need for symbolic operations and is particularly well-suited for real-time applications
involving sampled or discretized signals.

It is important to note that the proposed method does not rely on L’Hopital’s rule [16], as the signal
derivatives are estimated numerically using finite-difference approximations. This approach eliminates the
need for limit-based transitions and is better suited for the analysis of digitally sampled signals.

Furthermore, the proposed framework enables the parallelization of critical point detection and the
execution of localized reconstruction exclusively within regions exhibiting pronounced instability. This
significantly reduces computational overhead and enhances the model’s scalability. As a result, the method
exhibits dual adaptivity:

— with respect to the kernel order r, which is selected based on the complexity of the local signal
structure;

— and in time, through dynamic activation of the reconstruction process within selected temporal
intervals only.

In addition, to improve the accuracy of identifying complex regions within the signal, it is advisable
to incorporate its local energy characteristics. For this purpose, the following indicator is computed [13,14].

1. Local energy of the signal E (ty) within a temporal window centered at point tg:

to+A 4)
E(ty) = 2 x(t)2.

t=to—A

A high value of E(t,) indicates the presence of an impulse, spike, or transition, whereas a low value
corresponds to a stable (slowly varying) segment, where localized reconstruction is generally unnecessary.
2. Variation intensity (gradient-based activity measure):

to+A

= 3 ()

t=to—A

)

The indicator G (t,) quantifies the rate of signal variation within the temporal window and enables
the detection of rapid oscillations or discontinuities in the signal's derivative [14].

3. Cumulative instability C(t,) — a generalized indicator of local signal complexity that integrates
both energetic and dynamic components:
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C(to) = Y1 -E(to) + Y- G(tp), Y;,Y; >0, (6)

here, Y1, Y, — are weighting coefficients that determine the relative contribution of the energy and variation
intensity to the overall complexity assessment [10].

Once the coordinates of the critical points t,, have been identified, localized signal reconstruction is
performed within the corresponding temporal windows. However, to avoid abrupt transitions between the
localized and global models, the proposed method incorporates a smoothing window kernel based on the
Gaussian distribution [9]:

(t- t0)2> ™)
202 )

w(t, ty, A) = exp <—

This kernel performs soft weighted filtering, concentrating the majority of the influence around the
center of the window at t,, while gradually attenuating the weights assigned to neighboring time points.

Fig.1 illustrates an example of a Gaussian window with parameter A=0,2 applied to a unit impulse
signal. As a result, a smoothing effect is observed, where the impulse influences not only the central point
but also the adjacent time samples to a lesser extent.

1.0 1 : ——~ Impulse Signal
|
! —— Gaussian Window (A = 0.2)
E Filtering Result
0.8 1 | ---- Reference Point (t = 0)
!
|
v 0.6 i
B |
= |
a |
|
£ 0a- :
|
!
|
0.2 - i
|
!
|
0.0 - i
T T T T } T T T T
-1.00 -0.75 —-0.50 -0.25 0.00 0.25 0.50 0.75 1.00
t

Fig.1 — Impulse filtering using a Gaussian window (A = 0,2)

The window spreads the impulse’s effect across neighboring points, illustrating the smoothing
behavior.

Fig. 2 illustrates how the shape of the Gaussian window changes for different values of the parameter
A. As 4 increases, the window becomes wider, covering a larger time interval while reducing central
concentration. Thus, 4 serves as a spatial control parameter for the scope of the local model.

To ensure consistent signal reconstruction across both stable and critical regions, the localized model
is integrated with the global frequency-based approach. This fusion results in an integrated mathematical
reconstruction framework defined as follows:

d(t) = (1 - a(t)) ' dfreq (t) + a(t) ' leC(t) ) (8)
where a(t) € [0,1] is an adaptation function determined by the value of the instability indicator K (t);

dfreq(t) is the signal reconstructed in the frequency domain (global model);
d;oc(t) is the localized model, activated only near critical points.
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Fig.2 — Comparison of Gaussian windows for different values of A

The integration scheme combining frequency-domain and time-domain models using the dynamic
weighting coefficient a(t) is proposed by the authors as part of the adaptive reconstruction framework.

The parameter a(t) determines the relative influence of the local and global models on the
reconstructed signal:

— when a(t) =0, the reconstruction relies primarily on the spectral (global) model;

—when a (t)~1, the time-domain, locally adaptive model is dominant.

The value of a(t) changes dynamically depending on the instability indicator K(t), enabling the
model to flexibly adapt to signal variations and ensuring a smooth transition between time-domain and
frequency-domain reconstruction. This prevents discontinuities or abrupt shifts when switching between
regions.

To visualize the principle of adaptive switching between the time-domain and frequency-domain
models, Tab. 1 and Fig. 3 present an example of how the parameter a(?) changes in response to the instability
indicator K(?).

The value of a(?) increases in regions with critical signal changes, thereby activating the local model,
and decreases in stable segments where global spectral reconstruction is more appropriate.

Table 1 — Adaptation of the signal reconstruction model

t K(t) a(t) Dominant model Comment

0,1 0,002 0,05 Frequency-based (global) | Stable signal; frequency model is
appropriate

0,35 0,12 0,65 Time-domain (local) Critical point detected; local
reconstruction activated

0,50 0,08 0,40 Mixed mode Smooth transition between models

0,72 0,15 0,85 Time-domain (local) Strong instability

0,95 0,005 0,02 Frequency-based (global) | Return to stable regime
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To validate the effectiveness of the proposed integrated model, it is necessary not only to visualize
the dynamics of the adaptation parameters but also to quantitatively assess its impact on signal
reconstruction accuracy.

For this purpose, two indicators are calculated: the local alignment coefficient ALC (t,) and the local
mean squared error MSE;,.(ty), which together evaluate the quality of signal restoration near critical

points.

ALC(ty) =

S ax(6)-d(®)

)

Yx(t)? - Xd(®)?

to+A

MSEpe(te) =52 . (x®)—d®)’,

t=to—A

)

(10)

Tab. 2 and Fig. 4 present the modeling results at selected critical points of the signal, allowing for a

comparative analysis of the adaptive and traditional reconstruction models.

Table 2 — Comparison of signal reconstruction quality

to ALC(to) ALC(to) MSE 5. (to) MSE,.(to)
(traditional) (adaptive) (traditional) (adaptive)
0,20 0,78 0,84 0,022 0,018
0,35 0,76 0,83 0,024 0,020
0,50 0,74 0,81 0,026 0,021
0,72 0,73 0,80 0,028 0,023
0,88 0,77 0,85 0,023 0,018
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Fig. 4 — Dynamics of ALC(t,) and MSE,,.(t,) at critical points

As observed from Table 2 and Figure 4, the local alignment coefficient ALC (t,) increased on average
by 10-14%, indicating improved phase and amplitude synchronization of the reconstructed signal. At the
same time, the local mean squared error MSE;,.(t,) was reduced by approximately 12—18%, confirming
enhanced reconstruction accuracy in dynamically varying segments.

For the purpose of practical implementation, based on the theoretical framework and experimental
results presented above, a step-by-step algorithm for adaptive signal reconstruction has been developed
(Fig. 5).

Step 1 — Input signal analysis.

The instability indicator K(t) is computed to identify regions with potential abrupt changes in signal
structure.

Step 2 — Detection of critical points.

Time instances are selected where the value of K(t) exceeds the predefined threshold k, indicating
the need for localized analysis.

Step 3 — Local reconstruction.

At the identified critical points, a localized Volterra model with a Gaussian window is applied to
accurately restore signal structure within the corresponding time window.

Step 4 — Global reconstruction.

In stable regions where K(t)<k a frequency-domain model is employed for efficient background
signal reconstruction.

Step 5 — Adaptive model fusion.

An integrated signal is formed using the weighting coefficient & (t), which dynamically balances the
influence of local and global models based on the degree of instability.

Step 6 — Final signal reconstruction.

The resulting signal d(t), combines the strengths of both reconstruction strategies, ensuring high
accuracy in dynamic segments while preserving smoothness in stable regions.

The proposed method of localized time-domain signal reconstruction, based on a time-constrained
modified Volterra series model, demonstrates high effectiveness in restoring critical signal fragments
containing impulsive disturbances, narrowband transitions, or local anomalies. A key advantage of the
method lies in its adaptivity both in the time domain (via the instability indicator K(#) and in structural
complexity (through variable kernel order selection). The use of a smoothing Gaussian window enables
seamless integration of local and global reconstruction processes, while the weighting coefficient a (t)
ensures a dynamic response to signal variability.
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Fig. 5 — Block diagram of the adaptive signal reconstruction algorithm

As a result, the method enhances both phase and amplitude alignment, as reflected by an average
increase in the local alignment coefficient ALC (t) of 10-14%, and a reduction in the local mean squared
error MSE;,.(t,) within the range of 12—-18%, which meets the accuracy requirements for dynamic
environments. Overall, the method provides structurally consistent signal reconstruction across all time
regions, preserving accuracy and information integrity even under noisy or unstable conditions.

Conclusions and prospects for further research.

The study presents a novel adaptive signal reconstruction method that combines localized time-
domain modeling with global spectral techniques through dynamic model fusion. The integration of a
modified Volterra series constrained by temporal windows and governed by an instability-driven activation
mechanism allows for selective processing of critical signal segments. This method contributes to
overcoming key limitations of traditional spectral approaches, particularly in contexts where high temporal
resolution and localized accuracy are essential.

Future research may focus on optimizing the structure of the adaptive window function, including
the automatic tuning of its width A based on real-time signal characteristics. Another direction involves
generalizing the instability indicator K(t) by incorporating higher-order derivatives or machine-learned
features to improve sensitivity and robustness under various noise conditions.

Overall, the presented method establishes a foundation for scalable, data-aware signal reconstruction
solutions adaptable to a wide range of practical and high-variability environments.
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