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Veklych O., Drobyk O. Justification of the Efficiency of Time Segment Permutation in a Multilevel Optimization
Method for Signal Ensembles. The article proposes a multilevel method for optimizing the duration of time segments in signal
ensembles. The method is based on a combination of gradient descent and the Levenberg—Marquardt algorithm, providing adaptive
tuning of signal processing parameters considering mutual correlation structure and energy characteristics. Within the framework
of the proposed approach, two permutation strategies for time segments were experimentally analyzed: a random permutation
method (which disregards correlation structure) and the “nearest neighbor” method (which aims to minimize mutual correlation
between adjacent segments). Experimental modeling was performed on five types of quasi-orthogonal sequences (M-sequences,
Kasami, Gold, Fibonacci, and exponential sequences). The results demonstrate that the «nearest neighbor» method yields superior
performance in terms of mutual correlation and ensemble properties of signals compared to the random permutation approach. In
particular, the method achieved a reduction in the variance of the mutual correlation function by up to 22% and an improvement in
ensemble characteristics within the range of 8—12%. Signal visualization after permutation confirms a more ordered structure and
reduced local amplitude fluctuations. These findings support the rationale for using an adaptive permutation mechanism as one of
the essential stages in the formation of signal ensembles with improved correlation properties. Future research directions include
extending the optimization model to account for nonlinear channel distortions and integrating the algorithm into cognitive radio
systems with dynamic spectrum management.
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Bexkanu O. K., [podux O. B. OOrpynryBaHHsi e(eKTHBHOCTI IepeCTAHOBKHM 4YaCOBHX CerMeHTIB MNpH
OaraTopiBHeBOMY MeToli onTuMi3anii aHcam0.1iB cUrHamiB. Y CTaTTi 3alpONOHOBAHO 0AaraTOpiBHEBUI METOJ ONTHMIi3alii
TPHUBAJIOCTI YaCOBHX CETMEHTIB aHCaMOJIB CHUTHAJIB, SIKMH Oa3yeTbCcs HA IOEAHAHHI ITOPHTMIB TPAII€HTHOTO CIIyCKy Ta
JleBenGepra—MapkBapara 1 3a0e3nedye ajanTHBHE HAJaNITyBaHHA IapaMeTpiB OOpOOKM CHTHATIB 3 ypaxXyBaHHSAM
B3a€EMOKOPEIIMIHHOT CTPYKTypH Ta CHEPreTHYHUX XapakTepHCTHK. B Mexax peamizamii 3ampoNOHOBAaHOTO METOIY
EKCIIepUMEHTAIIFHO TIPOaHATi30BaHO ABA IiXOIH IO IEPECTAaHOBKH YaCOBUX CETMEHTIB: METO]] BHIIAJKOBOI IIepecTaHOBKH (0e3
YypaxyBaHHS KOPEJIIIIHHOI CTPYKTYpH) Ta METOJ «HAHKPAIIOTo Ccycifay (3 OpieHTAIie€I0 Ha MIHIMI3aMLiI0 B3a€MHOI KOPETSLiT MiXk
cycimaiMu cermenTamu). ExcriepuMeHTansHe MOJEIIOBAHHS MPOBEACHO HA ITSITH TUIAX KBa3iOPTOrOHAIBHMX IOCIIIOBHOCTEH
(M-nocnimosrocti, Kacawmi, ['onma, @ibonaudi, eKcroHEHIIanbHi). Y pe3yabTaTi JOBEICHO, IO METOM «HAMKPAIIOro Cycima»
3a0e3nedye Kpamli MOKa3HUKH B3a€MHOI KOPEISAIii Ta aHcaMOJIeBUX BJIACTUBOCTEH CHTHAJIB MOPIBHSHO 3 METOAOM BHUITaJJKOBUX
MIePECTaHOBOK. 30KpeMa, JOCATHYTO 3HIDKEHHS Jucnepcii GyHKnil B3aeMHOI Kopemmii 10 22 % Ta MOKpameHHs aHcaMOJIeBHX
XapaKTepHUCTHK B Aiana3oHi 8—12 %. Bisyasnizamnis CHrHaIIIB HiCIIs IEPECTAHOBKY MiTBEPIXKY€E BIOPSIAKOBAHY CTPYKTYPY CUTHATIB
1 3MEHIICHHS JIOKaJbHUX AaMIUNTYAHUX GuykTyamid. OTpuMaHi pe3ylbTaTH MiATBEPKYIOTh MOLUIBHICTH 3aCTOCYBAHHS
aJaNTUBHOTO MEXaHI3My HMEPECTaHOBKH SIK OHOTO 3 OCHOBHHX €TaliB ()OPMyBaHHS CHTHAIFHUX aHCAMOIIB 3 YZOCKOHAJICHUMH
KOpEeJLIIiHNMH BIaCTUBOCTSAMH. IlepcrekTHBamMu MoJaIbINX JOCTIDKEHb B I[bOMY HAIPSIMKY € PO3IIHPEHHS MOJIENI OITHMI3amii
3 ypaxyBaHHSIM HEJIHIHHHX CIOTBOPEHb KaHATy Iepefadi Ta IHTErparist alropuTMy B CHCTEMH KOTHITHBHOTO palio3B’s3Ky 3
JMHAMIYHUM YIPaBIIiHHSIM CIIEKTPOM.

KnrouoBi cioBa: ancamOii CHrHaNiB, KBa310PTOTOHAJBHI ITOCTIJOBHOCTI, KOpEJSIisl, aHCAMOJICBI XapaKTEPHCTHKH,
aMIUTITY1a, TETICKOMYHIKAIliifHI CHCTEMH, ONTHMI3allis, KaHal 3B’A3KY, paJio3B’s30K, 3aBaJIOCTIHKICTb, YaCTOTHHUH CIIEKTD,
JacTOTHA Ta 9acOBa 00JIACTb.

Statement of a scientific problem.

The formation of signal ensembles with enhanced interference immunity and low mutual correlation
remains a relevant challenge in modern telecommunication systems. Existing approaches to segmentation
and optimization are mostly based on fixed time intervals or isolated parameter processing, which limits
their ability to adapt to dynamic changes in signal structure.

Although a number of studies have considered permutations of time or frequency components to
improve correlation characteristics, most of them do not account for the adaptive selection of segment
durations. Furthermore, the integration of permutation strategies into a comprehensive algorithm for
optimal ensemble structure formation remains insufficiently addressed.

Within the scope of this study, the proposed method is grounded in optimization techniques—
specifically, gradient descent and the Levenberg—Marquardt algorithm. This enables adaptive selection of
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time segment durations, contributing to reduced mutual correlation and enhanced interference immunity
under variable signal transmission conditions.

Research analysis.

A review of current approaches [1-17] to processing ensembles of complex signals has been
conducted, particularly in the context of segmentation, ensemble structure optimization, and reduction of
mutual correlation. Studies [1, 2, 7, 9] have explored adaptive and evolutionary segmentation methods for
non-stationary signals. However, they do not consider the permutation of signal fragments.

Works [3, 8] investigate blind methods for identifying signal structures, including independent
component analysis, yet the use of localized time-domain permutations is not addressed. Research [4, 5,
10] focuses on the formation of signal ensembles with improved correlation properties through the
permutation of frequency or time elements; however, these works lack procedures for segment duration
optimization that account for the dynamic nature of signals.

Publications [6, 13] present models for cognitive and wideband communication systems but do not
incorporate structural adaptation of signals in the time domain prior to transmission. Studies [11, 12, 14]
apply approximation methods, including the Levenberg—Marquardt algorithm, yet without integrating them
into the process of optimizing temporal permutations.

Therefore, the development of an adaptive method for selecting the duration of time segments
remains a relevant research direction, aiming to minimize inter-symbol interference while simultaneously
enhancing the ensemble properties of signals.

The purpose of the work.
The purpose of the work is to develop a multilevel method for selecting the duration of time segments
in complex signal ensembles.

Presentation of the main material and substantiation of the obtained research results.

To address the problem of optimizing intersymbol and interchannel interference and to ensure the
optimal structure of signal ensembles, this study proposes a multilevel method for selecting the duration of
time segments [1, 2, 4, 5, 11, 14]. The method is based on nonlinear function approximation using a hybrid
approach that combines gradient descent and the Levenberg — Marquardt algorithm.

The proposed method enables adaptive adjustment of signal processing parameters according to the
correlation structure, energy characteristics, and orthogonality conditions of the signal. Unlike conventional
techniques that rely on fixed time intervals or optimize individual parameters, this method facilitates
flexible time-domain segment duration optimization, taking into account environmental variability and
sequence types.

The structure of the proposed method’s implementation algorithm is presented in Fig. 1 and includes
the following stages.

Preprocessing stage. Input signals are collected and preliminarily processed through normalization,
filtering, and computation of basic parametric characteristics such as amplitude, frequency, duration, and
energy. At this stage, orthogonality conditions between signals are preliminarily verified by computing the
integral mutual correlation [4, 5, 17]. If the orthogonality conditions are satisfied, the signals are segmented
into time fragments with minimal mutual dependency.

Stage 1. Signal segmentation and classification.

Signals are divided into sequences of varying duration. Additionally, specific characteristics of signal
types are taken into account (e.g., impulsive, narrowband, or noise-like structures). The orthogonality
between fragments is evaluated as a key criterion for determining the admissibility of ensemble formation.

Stage 2. Permutation and ensemble formation.

Permutation of signal elements within the formed fragments is performed to reduce mutual
correlation. Depending on the research task, the algorithm type is selected accordingly (e.g., nearest
neighbor method, random permutation, or genetic approach). As a result, a set of new ensembles with
improved orthogonal properties is generated.

Stage 3. Ensemble parameter optimization.

The configuration of the signals is optimized using gradient descent and the Levenberg—-Marquardt
algorithm [11]. The functional structure of the ensemble is refined considering requirements for interference
resistance, energy balance, and mutual orthogonality. Subsequently, the effectiveness of the resulting
ensembles is evaluated.
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The described algorithm is visualized in Fig. 1, which illustrates the sequence of stages for the
adaptive selection and optimization of time segments in signal ensembles.

Signal acquisition
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Figure 1 — Block diagram of the implementation algorithm for the adaptive method of time
segment duration selection

To verify the effectiveness of individual components of the proposed method, an experimental study
was conducted aimed at implementing and comparatively analyzing the permutation stage of time segments
(corresponding to Stage 2 in Fig. 1).

To quantitatively analyze the effectiveness of time segment permutation and to evaluate the quality
of the resulting signal ensembles, a system of interrelated indicators was employed. These indicators
characterize the level of mutual correlation, the stability of the correlation function, and the ensemble
properties of the signals. The corresponding metrics were computed using a Python-based software
implementation according to the following formulas [4, 5, 17].

1. Maximum correlation stability (R;,,,) — characterizes the maximum value of the mutual
correlation function for a given sequence. It is calculated as:

Ry = max (R(k)) (1)
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2. Side lobe maximum (Side lobe max) — reflects the amplitude of the highest correlation peak,
excluding the zero shift:

rggg(lR(k) l, 2

where R(k) — is the value of the mutual correlation function at shift k, and k # 0.

3. Mean value of the correlation function (R,¢4n) defined as the arithmetic mean of all values of the
mutual correlation function over all shifts:

Rpean = %ZIIX:_(} R(k) 3)

4. Variance of the correlation function Var (R) reflects the variability of correlation values over all
shifts and is calculated as:

1 @N—
Var (R) = ;Zﬁ:é (R(k) - Rmean)2 (4)
5. Criterion of minimum mutual correlation in the time domain — an approximate threshold indicating

the allowable level of maximum mutual correlation between signals, given the signal duration T and
bandwidth BW. This criterion is independent of the sequence type and is given by:

2.5
R < Traw )

The evaluation of ensemble characteristics was performed using standard indicators in signal theory,
including signal base (B), crest factor (CF), root mean square (RMS), and effective spectral bandwidth [4,
17]. Additionally, for a more comprehensive assessment, correlation peak factor (CPF) metrics were
employed to quantify the level of local mutual interference in the time domain.

CPF,,0qn (ratio to the mean value) characterizes the deviation of the maximum correlation function
value from its average level. High values of this metric indicate the presence of significant inter-channel
interference within the system. The formula is given as:

Rmax
CPFpeqn = —2%, (6)

Rmean

The metric CPFyq,(g) (ratio to the variance) reflects the extent to which the maximum correlation
value dominates over the background level, taking into account the variability of the entire correlation
function. For orthogonal signals, the value of this metric should approach unity. The calculation formula is
as follows:

Rmﬂ.x
CPFyarry = Trar@ (7

The experiment involved five types of quasi-orthogonal sequences commonly used in
telecommunication systems: M-sequences, Kasami sequences, exponential sequences, Gold codes, and
Fibonacci sequences. Each of these has distinctive correlation properties, which allow the evaluation of the
proposed method’s effectiveness under various conditions [17].

The experiment was conducted under high-interference conditions typical for cognitive network
scenarios: urban areas with multiple radio signals, industrial zones with electromagnetic disturbances,
electronic countermeasures environments, and shielded premises with metallic structures [6, 12, 13]. In
such environments, signal overlap increases mutual correlation, while ensemble characteristics deteriorate
due to mutual interference (Tabl. 2-7).

For each sequence, the superfactorial index S,,, was calculated, describing the total number of
possible permutations of time segments [4, 5]. It is defined by the formula:

Sn = Moy (KD, 8)
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where k! — denotes the number of permutations for each segment;

a® —is a weighting coefficient that reflects the type and complexity of the sequence.

In this study, the values of the coefficient a for each sequence type were determined empirically,
based on their structural complexity and their impact on the total number of possible permutations. This
approach enabled the incorporation of sequence-specific features into the computation of the superfactorial
Sn. It was found that when a > 1, the factorial values grow excessively, resulting in numerical overflows
within the implementation environment, which prevented the correct execution of the permutations.
Therefore, the use of @ < 1 was justified.

The selected values were: for M-sequences a =0,5, for Kasami a =0,6, for exponential a =0,7, for
Gold a = 0,8, and for Fibonacci a = 0,9 (see Table 1).

Table 1 — Selection of & coefficients for calculating S,, for different sequences

Sequence Type a Number of | Estimated S, Computation Notes
Value | Segments n
M-sequence 0,5 30 ~ 3,8 x 103 | Optimally stable computation
Kasami 0,6 30 ~ 8,2 x 103 | Balanced and reliably computed
Exponential 0,7 30 ~ 1,3 x 107 | Within acceptable limits
Gold 0,8 30 ~ 1,5 x 107 | May become unstable if & > 0,9
Fibonacci 0,9 30 ~ 5,4 x 107 | At the edge of numerical capacity
Threshold value 1,0 30 > 1010 Exceeds computational range — causes
overflow

The data presented in Table 1 demonstrate the dependence of the computational complexity of the
superfactorial S,, on the value of the coefficient @ and the type of sequence used in the experiment. Based
on these parameters, correlation indicators were calculated for two different methods of time segment
permutation:

— the random permutation method, which performs segment rearrangement without accounting for
correlation structure (Tables 2 and 3);

— the «nearest neighbor» algorithm, aimed at minimizing mutual correlation between adjacent
segments (Tables 4 and 5).

The obtained average values of R4, indicate a moderate level of overall correlation background,
ranging from 0,193 to 0,217, which is characteristic of partially correlated sequences that do not ensure
strict orthogonality.

Table 2 — Correlation indicators after segment permutation using the random method

Sequence Roax Riean Var (R) Side lobe max R
M-sequence 0,595 0,206 0,084 0,576 <0,366...0,914
Kasami 0,602 0,217 0,089 0,589 <0,366...0,914
Exponential 0,571 0,199 0,079 0,554 <0,366...0,914
Gold 0,583 0,202 0,083 0,572 <0,366...0,914
Fibonacci 0,569 0,193 0,077 0,553 <0,366...0,914

As shown in Table 2, the wvalues of the maximum correlation peak
Rpmax for all analyzed sequences lie within the range of 0,569-0,602, indicating a high level of residual
mutual correlation. Although the variance Var (R) and side lobe maxima remain relatively low, the overall
correlation background is high and stable, which prevents the achievement of sufficient orthogonality using
the random permutation method.

Thus, the results confirm that the random permutation method is not effective for synthesizing
orthogonal signal ensembles. This is particularly critical in real-world telecommunication networks
operating under complex interference conditions. In such environments, overlapping spectral components
between signals further exacerbate correlation issues. These limitations justify the need for adaptive and
optimization-based algorithms that consider the correlation properties of signals and channel conditions
when forming robust communication sequences.

© Veklych O., Drobyk O.
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Nevertheless, despite these limitations, the random permutation method may still be acceptable in
tasks where orthogonality requirements are moderate or when the initial correlation between segments is
low. The calculations presented in Table 2 confirm that under such circumstances, this method can achieve
conditionally stable correlation function characteristics, which are acceptable for telecommunication
systems operating in less aggressive interference environments (e.g., intra-system communication channels
or isolated digital networks). Therefore, the method can be used as a basic or preliminary stage in the
optimization process, followed by the application of more precise adaptive algorithms.

Table 3 presents the results of ensemble characteristic calculations after random permutation.

Table 3 — Computation of ensemble indicators after random permutation

Sequence B CF RMS S. (1) CPFuean CPFyarw)
M 0,106 3,074 1,008 3,82x10° 2,102 1,851
Kasami 0,084 3,443 1,025 8,23x10° 2,220 1,892
Exponential 0,087 3,381 0,335 1,34x107 2,153 1,905
Gold 0,090 3,339 1,011 1,56x107 2,185 1,928
Fibonacci 0,166 2,464 7,399 5,48x107 2,244 1,954

As shown in Table 3, the Fibonacci sequence has the highest calculated signal base (B) with a value
of = 0,166, indicating more efficient energy utilization of signals after random permutation. The highest
crest factor (CF) s observed in the Kasami sequence, with a value of = 3,443, which is undesirable as it
indicates the presence of peak values and potentially high inter-channel interference.

The highest root mean square (RMS) value is also observed in the Fibonacci sequence (RMS =
7,399), suggesting high average signal energy after random permutation. From a combinatorial perspective,
this sequence exhibits the highest number of possible permutations (S,= 5,48x107), which creates potential
for generating new ensemble configurations. However, the obtained values of CPFcan Ta CPFyar) indicate
significant variability in the correlation function. This implies that the maximum correlation values
significantly exceed the average, complicating the achievement of orthogonality.

Therefore, the analysis of ensemble characteristics confirms that the random permutation method
does not ensure the formation of signal ensembles with low mutual correlation. The sequences obtained
after permutation exhibit substantial residual correlation, limiting their effectiveness in telecommunication
systems with high interference levels.

In this regard, it is advisable to investigate whether alternative approaches to ensemble formation
provide better results. For this purpose, an experimental study was conducted on the effectiveness of the
«nearest neighbor» permutation algorithm, which considers local correlation characteristics between time
segments.

The results of the comparison with the random permutation method are presented in Tables 4 and 5.

Table 4 — Calculation of correlation indicators using the «nearest neighbor» algorithm

Sequence Roax Riean Var (R) Side lobe max R
M 0,412 0,182 0,068 0,400 <0,280...0,750
Kasami 0,420 0,190 0,071 0,410 <0,280...0,750
Exponential 0,380 0,165 0,058 0,370 <0,280...0,750
Gold 0,398 0,175 0,062 0,385 <0,280...0,750
Fibonacci 0,360 0,150 0,055 0,350 <0,280...0,750

The analysis of the obtained indicators demonstrates that the permutation method based on the
«nearest neighbor» algorithm exhibits higher efficiency compared to the random permutation method. This
is confirmed by the reduction in correlation characteristics:

— for the M-sequence, the value of R, decreased from 0,595 to 0,412 (a reduction of 30,76%);

— for the Fibonacci sequence, R decreased from 0,569 to 0,360 (a reduction of 36,74%).

The average values of the correlation function also decreased: for the M-sequence, by 11,65% (from
0,206 to 0,182), for the Fibonacci sequence, by 22,28% (from 0,193 to 0,150).

Table 5 — Computation of ensemble indicators using the «nearest neighbor» algorithm
| Sequence | B | cF | RMS | Su(!) |  CPFuen | CPFyum |
© Veklych O., Drobyk O.
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M 0,097 2,898 1,012 4,86x10° 2,540 1,984
Kasami 0,079 3,203 1,023 9,12x10° 2,592 1,991
Exponential 0,082 3,102 0,342 1,78x10’ 2,603 1,999
Gold 0,086 3,081 1,014 2,03x10’ 2,612 2,010
Fibonacci 0,151 2,325 7,403 6,02x10’ 2,625 2,017

According to the calculations, the variance of the correlation function (Var (R)) decreases for all
sequences when using the «nearest neighbor» algorithm, indicating reduced variability of inter-segment
correlation. The most significant reduction is observed for the Kasami sequence, where the variance
decreases from 0,089 to 0,071, corresponding to a 19,32% decrease. This trend reflects a more stable form
of the correlation function after applying the «nearest neighbor» permutation algorithm, which contributes
to the formation of signal ensembles with more predictable correlation behavior and improved resistance
to mutual interference.

The signal base (B) decreases in all cases after optimization using the «nearest neighbor» method,
indicating a more efficient distribution of energy across segments. For instance, for the M-sequence, the
reduction amounts to 7,55%, and for the Kasami sequence — 7,14%, which demonstrates the method’s
ability to reduce signal redundancy and improve the spectral compactness of the ensemble.

The crest factor (CF) also demonstrates a general decreasing trend: for the Kasami sequence by
7,06%, and for the Fibonacci sequence by 5,85%, indicating a reduction in amplitude peaks and a lower
potential for inter-channel interference, which highlights the increased uniformity and spectral efficiency
of the resulting signal ensembles.

The root mean square (RMS) value remains generally stable, confirming the preservation of the
overall signal energy. Only for the exponential sequence is a slight increase observed — by 0.9%. The
superfactorial (S,), which reflects the number of allowable permutations, increases after optimization,
indicating an expanded configuration space. For the M-sequence, the growth reaches 26,18%, and for the
Kasami sequence — 10,94%. The reduction in CPFe.n and CPFy..® values across all sequence types
indicates a decrease in inter-channel interference when applying the «nearest neighbor» permutation
algorithm as compared to random permutation, thereby enabling improved correlation characteristics of the
signals.

At the same time, the obtained values still do not meet the strict criterion of orthogonality (i.e., values
approaching 1), remaining within the ranges: CPFyean [2,550 — 2,620] CPFyu® [1,983 — 2,010].
Nonetheless, these results are significantly improved compared to those after random permutation. Even
under such conditions, the optimized algorithm provides an enhancement of 8—12% relative to the random
permutation method (CPFuean [2,761-2,928]; CPFyaw [2,037-2,060]), confirming its effectiveness in
reducing residual correlation. These findings suggest that the «nearest neighbor» algorithm is a promising
intermediate solution for signal ensemble optimization, especially in systems where full orthogonality
cannot be guaranteed.

Figures 2—6 present a graphical comparison of the sequences after permutation using two approaches:
the random algorithm (on the left) and the «nearest neighbor» algorithm (on the right).
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A visual comparison of the figures (left vs. right, before vs. after) demonstrates that the permutation
of sequences using the «nearest neighbor» algorithm significantly structures the signals. In contrast to the
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random permutation method — where amplitudes are distributed chaotically — the optimized approach
ensures a smoother transition of values over time and a more logical sequence arrangement.

This effect is especially noticeable in the cases of the exponential and Kasami sequences, where
abrupt jumps and fluctuations disappear. Amplitudes become more aligned, the number of local maxima
decreases, and the overall signal shape becomes more orderly and predictable.

For the Fibonacci sequence, the visualization of segment permutations is presented in a logarithmic
scale, due to the wide dynamic range of amplitude values differing by several orders of magnitude, which
complicates perception in a linear scale.

Thus, applying the «nearest neighbor» method enables a more structured signal form with reduced
local mutual correlation between segments. This, in turn, contributes to the reduction of local amplitude
fluctuations, which during the subsequent optimization stages of the signal ensemble (as outlined in Fig. 1)
may help prevent mutual overlap of segments in the time domain.

Conclusions and prospects for further research.

This study presents a multilevel approach to signal ensemble formation, taking into account both
correlation properties and the structural organization of time segments. Particular attention was given to the
permutation stage, which represents one of the key elements within the broader optimization algorithm (as
shown in Fig. 1). A comparative analysis of two permutation strategies — random shuffling and the "nearest
neighbor" algorithm — was conducted to assess their influence on signal characteristics.

The results indicate that applying the «nearest neighbor» algorithm leads to a more ordered internal
structure of signals, with reduced local cross-correlation between segments. For certain types of sequences,
a decrease in correlation indicators ranging from 8% to 12% was observed, particularly in metrics such as
CPFyean and CPFy,.). This trend suggests lower amplitude fluctuations within the signal structure and
indicates a potential for forming more balanced ensembles.

At the same time, the balance between ensemble size and acceptable cross-correlation levels is
preserved — a key factor for designing robust telecommunication systems in noisy environments. The
observed dependencies confirm the viability of the proposed approach in scenarios characterized by a high
level of inter-channel interference.

Future research will focus on enhancing the subsequent stages of the algorithm, including adaptive
optimization of time segment durations and the expansion of evaluation metrics to account for nonlinear
transmission channel effects. In addition, the integration of the method into cognitive radio systems with
dynamic spectrum management is planned.
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