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INTELLIGENCE IN BRAIN-COMPUTER INTERFACES WITH BIG DATA

Stefanyshyn 1., Pastukh O. High-Performance Computing for Machine Learning and Artificial Intelligence in Brain-
Computer Interfaces with Big Data. The article explores approaches to optimizing the processing of big data of EEG signals in BCI
by combining dimensionality reduction methods and HPC. The relevance of the problem is due to the fact that modern BCls generate
large datasets of signals, the processing of which in real time often creates a critical load on hardware and software resources. The aim
of the work is to establish an optimal balance between classification accuracy, model robustness, and data processing time using various
dimensionality reduction methods — PCA, ICA, LDA — in combination with the MLP classifier and the Dask library for parallel
calculations. A series of experiments was conducted by varying the number of components for each decomposition. It was found that
when using PCA withn_components=0.999 or LDA withn_components=13, the accuracy and f1 weighted remain practically the same
as in the model without dimensionality reduction, but the processing time is reduced by 1.5-4 times, depending on the settings. The use
of fewer components allows for even higher performance, but is accompanied by a noticeable decrease in accuracy, which is critical for
neuroengineering and rehabilitation tasks. The use of Dask for organizing parallel calculations made it possible to effectively scale
experiments and avoid excessive load on individual system nodes. A comparative analysis of the accuracy, robustness, f1 _weighted,
roc_auc_ovr_weighted metrics and execution time showed that the optimal settings of matrix layouts allow preserving key information
in the signal without significant loss of classification quality. The developed approach has proven its effectiveness for tasks where
resource limitations are combined with requirements for stability and accuracy of the system in real-time mode. The practical value of
the results lies in the possibility of adapting the proposed pipeline for a wide range of biomedical and engineering applications, where
speed, reliability, and robustness of brain signal processing are critical.
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Credanumun I. M., ITactyx O. A. BucoxonpoaykTHBHi 00UMC/IeHHSI JJIsi MAIIMHHOIO HABYAHHA Ta IITYYHOIrO
iHTesIeKTyY B iHTEepeiicax MO30K-KOMM'IOTEP 3 BETUKHUMU JAHUMH. Y CTATTi TOCHTIHKEHO IMiIXOAH IO OTITUMi3allii 00pOOKH BEIMKUX
o6csrie EEG mannx y BCI numsixom noeaHaHHS METO/(IB 3MEHIICHHS PO3MIPHOCTI 1 BUCOKOIPOTYKTUBHHUX OOUUCIEHb. AKTyalbHICTh
npobiemMu 06ymoBieHa TuM, 1o cyvacHi BCI renepyroTs Bennki MacHBH CHTHAIIIB, 00poOKa SIKHX y peanbHOMY daci 9acTO CTBOPIOE
KPUTHYHE HaBaHTAXKEHHS HA allapaTHi Ta IPOTrpaMHi pecypcH. MeToro poOOTH € BCTAaHOBIEHHS ONTUMAIBHOTO OaJIaHCy MiX TOUHICTIO
kiacuikarii, cTiHKiCTIO Mozesel 1 4acoM 0OpOOKH JaHUX 3a JOTIOMOTOIO0 Pi3HUX METOiB 3MeHIeHHs po3MipHocTi — PCA, ICA, LDA
— y xomOinamii 3 kiacudikaropom MLP i 6ibmiorexoio Dask mis mapanensaux pospaxyHkis. IIpoBeneno cepiro ekcrepuMeHTiB i3
BapilOBaHHIM KUTBKOCTI KOMITOHEHTIB ISl KOXKHOTO po3Kiany. Beranosneno, mo npu BukopuctanHi PCA 3 n_components=0.999 a6o
LDA 3 n_components=13 tounicts i fl weighted 3anmmaroTscst MpPakKTUYIHO TAaKUMU K, K y MOzelNi 0e3 3MEHIIEHHS PO3MipHOCTI,
IpoTe 4ac 00poOKy 3MeHIIyeThes y 1,5-4 pasu 3aJIeKHO BiJ HAIAIITYBaHb. BHKOpHCTaHHS MEHIIIO] KITBKOCTI KOMIIOHEHTIB JJO3BOJISE
JocsraTé mie OinbIIoi MIBHAKOAII, OJHAK CYHPOBOIKYETHCS MOMITHHM 3HIDKEHHSM TOYHOCTI, IO € KPUTHUYHHUM JUIS 3aBJaHb
HelpoimkeHepii Ta peaOimitamii. 3acrocyBamus Dask st opramizamii mapanensHHX pO3paxyHKIB Jalno 3MOTY e(eKTUBHO
MacmrabyBaTi €KCIEPUMEHTH Ta YHHUKHYTH HaJMIPHOTO HABAaHTaKCHHS Ha OKPEMi BY3IH CHCTeMH. IIOpiBHSIBHMIT aHAJ3 METPHK
accuracy, criiikocti, f1_weighted, roc_auc ovr weighted i wacy BUKOHAaHHS ITOKa3aB, IO ONTHMAaJIbHI HAJIAIITYBAaHHS MaTPUYHHIX
PO3KIAfiB JAf0Th 3MOTY 30epiraTdl KIIOUOBY iH(OpMaIiio B curHaJi 6e3 iCTOTHOI BTpaTh AKOCTi Knacugikanii. Pozpobiennit miaxin
JIOBIB CBOIO €(DeKTHBHICTH AJIST 337124, e OOMEKEHICTh PECYPCiB MOEAHYETHCS 3 BUMOTAMH JI0 CTiFKOCTI ¥ TOYHOCTI poOOTH CHCTEMH B
pexnMi peansHOro wacy. IIpakTwdna IiHHICTE pe3ysbTaTiB MONATAE B MOXIIMBOCTI aJanTarlii 3alpoNOHOBAHOTO MaiIuiaifHa st
IIAPOKOTO CHEKTpa OIOMEIUMYHHMX Ta IHKEHEPHHX 3aCTOCYBaHb, 1€ KPUTUYHHMH € MIBUAKICTh, HAmIHHICTH Ta MacIITabOBaHICTh
00pOOKH CHTHAIIIB MO3KY.

Kiio4oBi cioBa: MammHHEe HaBYAHHS, eIEKTpoeHIe(daaorpama, pyxoBa Bi3yami3allis, BHCOKOIPOIYKTHBHI OOUMCICHHS,
BeJIMKI JaHi, iHdopmariiHi TexHoIOoTii, iHTep(helicH MO3Ky Ta KOMITIOTepa

Formulation of the problem.

BClIs are a cutting-edge technology that opens up new horizons in human-machine interaction. They
are already used in medical fields, neurorehabilitation, mind control of devices, as well as in augmented and
virtual reality [1, 16, 21]. Thanks to the ability to read and analyze EEG and other neural signals, these systems
help people with disabilities, improve treatments for neurological disorders, and are even used in the eSports
field to analyze cognitive processes.
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However, the work of BCI is associated with serious challenges. One of the main ones is the processing
of large volumes of data. Every second of BCI operation generates many signals that need to be analyzed
quickly and accurately [2]. However, not all of this data is equally important: some contains critical
information, while others can only create an unnecessary load on computing resources. Therefore, the
efficiency of BCI operation largely depends on the ability to separate the necessary data from the irrelevant
ones, optimizing the process of their processing[3].

The usage of methods for reducing the amount of processed data is an important step in ensuring high
speed and accuracy of neural signal recognition. Important signals have priority access to computing power,
while less important ones can be filtered or aggregated to reduce the overall load [4]. This approach allows not
only to speed up the operation of BCI, but also to reduce power consumption and increase the overall robustness
of the system.

In this article, we will consider which data is crucial for the operation of BCI, what factors determine
its importance, and how to effectively reduce unnecessary data without losing the accuracy of the system.
Analysis of these aspects will allow a better understanding of how to optimize computing processes and
improve the performance of modern BCls.

An analysis of the latest research and publications.

This work is a continuation of our previous research [5-8], in which we investigated the robustness,
accuracy, and computational efficiency of various machine learning algorithms for EEG signal classification
in BCI systems. Building on the results obtained earlier, this study focuses on the practical implementation of
dimensionality reduction techniques and parallel computing tools to further improve the robustness and
effectiveness of BCI algorithms when working with large-scale neural datasets. The current analysis develops
the proposed methodological framework and provides a more in-depth comparative assessment of
dimensionality reduction strategies under different experimental conditions.

Recent advances in data dimensionality reduction and machine learning have led to the development
of a variety of methods that improve the accuracy and efficiency of classification models. Dimensionality
reduction methods, such as PCA, ICA, and LDA, have become the main steps in data preprocessing in many
scientific works, especially in the context of EEG signal classification and motor activity prediction [9-22].
These methods allow for the reduction of the complexity of datasets while preserving important information,
which in turn improves the performance of models.

PCA is actively used in research due to its ability to reduce the number of features while preserving as
much variation as possible in the dataset. For example, in a study conducted by Djelloul K. and Belkacem A.N.
[9], PCA was used to classify EEG signals, which allowed for simplifying the feature space before applying
classifiers such as MLP. ICA, on the other hand, is particularly useful for separating independent sources in
mixed signals, which is important in neurocomputing tasks. A study by Vélez-Lora H.J. et al. [10] showed how
ICA can be used to extract independent components from EEG signals, which significantly improves
classification accuracy in motor imagery tasks.

LDA, which provides maximum separation between different classes, is also an important tool in the
feature selection process. In the work of Kabir M.H. et al. [11], LDA was applied to select the most
discriminative features before using classification algorithms, which ensures high-quality results when further
training models.

One of the main directions of modern research is the integration of high-performance computing (HPC)
into machine learning. HPC allows for a significant increase in the speed of processing large amounts of data
and reduces the time to train models. In the study of Kabir M.H. and colleagues [11], have shown how the use
of parallel computing can accelerate the process of feature extraction and classification, which is critical for
real-world applications in medicine and neurocomputer interfaces. Optimization techniques, including the use
of multithreading and GPU acceleration, are actively used to reduce computational costs, allowing for efficient
processing of large data sets.

Optimization of computation is key to processing large data sets and improving model performance,
which is especially important for practical applications in areas such as neuroengineering and biomedical signal
processing. HPC significantly reduces processing time, which is important for real-world applications of
models in living systems.
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Therefore, recent studies emphasize the importance of using dimensionality reduction methods such as
PCA, ICA, and LDA in combination with HPC to optimize machine learning. These approaches are important
for solving complex tasks in the analysis of large data sets, such as EEG signal classification and motor
movement prediction.

Formulation of the purpose and objectives of the research.

In previous studies, we performed calculations based on the full set of data obtained from BCls [5-8].
This approach allowed us to achieve maximum accuracy and robustness, but also created a significant load on
computing resources, which could affect the system’s processing speed and overall efficiency. Up to now, we
have not conducted a systematic analysis of which data are most significant for BCI operations and whether
their number can be reduced without significant losses in performance.

This article aims to investigate the possibility of reducing the amount of processed data without
significantly affecting the accuracy, robustness, and computation time of BCIs. We propose methods that allow
us to reduce the load on the system by discarding less significant data. The selection of relevant information is
based on the analysis of its impact on the results of calculations and the efficiency of the algorithms.

In this study, we will perform a comparative analysis of the obtained results, comparing the
performance of the BCI algorithms when using the full amount of data with the performance after applying the
optimized approach. The performance evaluation will be based on many metrics.

We will also investigate the impact of different filtering parameters on the system performance to
determine the optimal settings that will minimize the loss of accuracy while reducing the amount of
computation. This will allow us to form clearer conclusions regarding the possibility of using selective data
processing in BCIs and offer recommendations for future research in this area.

Presenting the main material.

This study is based on a real-world experiment in which we used the NEUROKOM computer-based
electroencephalograph [23] to collect EEG data during the execution of test tasks (Fig. 1). The main goal of the
experiment was to obtain accurate and detailed recordings of brain activity, allowing us to better understand
which signals are key to BCI operations and which can be filtered out without significant loss of accuracy.

Fig. 1. Photo taken during the experiment

Several EEG data files were collected during the experiment. The following image shows an example
of one such file, demonstrating characteristic patterns of brain activity during the test task (Fig. 2).
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Fig. 2. Illustration of EEG signals during little finger movements

The collected data are extremely large in volume, as the brain generates a significant amount of
information every second. Processing such large data sets requires significant computing resources and time.
This can create a high load on the BCI, affecting its speed and robustness. That is why one of the key aspects
of this research is to identify less significant data that can be filtered out without critical losses in accuracy.

Explanation of investigation.

Our algorithm is based on a classification task, where we use the MLP to analyze the collected EEG
data. MLP is an effective choice due to its ability to perform parallel computations, which is especially
important for working with large amounts of data, as in our case. The MLP structure allows us to calculate the
weights of neurons in different layers simultaneously, using multiple computing cores, which significantly
reduces the training time of the model [24].

To optimize the computations and increase the efficiency of working with large data sets, we use the
Dask library. It is a powerful tool for parallelizing computations, which allows us to distribute tasks across
multiple processors or even a cluster of servers [25]. One of the main advantages of Dask is that it integrates
with popular scientific computing libraries such as NumPy, Pandas, and Scikit-learn, making it highly suitable
for our current task.

In our experiment, to reduce the amount of data to be processed, we apply dimensionality reduction
methods, which allow us to preserve important information while reducing the amount of data that needs to be
processed. This is especially important when working with large datasets such as EEG.

One of the main methods we use is PCA. PCA reduces the number of dimensions in the data by
identifying principal components that retain the most variability in the data. This allows us to reduce the
dimensionality without significantly losing important information. With PCA, we can transform the data into
new axes that represent linear combinations of the original features, thus simplifying the calculations [24].

Another important method is ICA, which focuses on finding statistically independent components. ICA
is particularly useful in signal analysis, as in the case of EEG, where the signals may be mixed due to noise or
artifacts. It allows us to isolate cleaner components that can be useful for classification, reducing the number
of features needed [24].

LDA is another method used to reduce dimensionality with a focus on maximizing the separation
between classes in the data. LDA allows us to preserve the greatest separation between classes, which makes
it useful for classification tasks. This method helps not only reduce the number of features, but also improves
classification accuracy by preserving important linear distinctions between classes [24].

The usage of these methods allows us to reduce the amount of data to be processed while preserving
the essential information necessary for classification. They allow us to optimize the processing process and
reduce the load on the system, which is important for achieving high efficiency and accuracy in processing
large data sets.

For each of the dimensionality reduction methods, we will conduct three measurements with different
settings for the number of components. The first measurement will be carried out with a large number of
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components to preserve as much information from the data as possible. The second measurement involves the
use of a small number of components, which will reduce the amount of data and reduce computational
complexity, although with some loss of accuracy. The third measurement will include the optimal number of
components, which will provide a balance between reducing the size of the data and maintaining sufficient
accuracy for subsequent classification.

This approach will make it possible to evaluate how different settings for the number of components
affect the accuracy and efficiency of models, and will also help to choose the optimal parameters for each of
the methods in the context of a specific problem.

Explaining the calculation pipeline.

In our study, we use a pipeline that includes Scikit-learn, Joblib, Dask, clusters, and matrix
decomposition methods.

Initially, we used Scikit-learn to build the classification model. The MLP classifier is chosen due to its
ability to perform parallel computations, which allows for efficient handling of large datasets. We also apply
data reduction methods such as PCA at the data preprocessing stage, which reduces the complexity of the model
without losing important information [24-25].

learn — ‘_’L/'

Joblib

Fig. 3. Software-hardware computer calculation pipeline [25]

After training the model, we use Joblib to serialize it and save it quickly, which avoids retraining.

Dask integrates to distribute the computation across multiple cores or nodes in a cluster, which speeds
up the processing of large data sets. In addition, data reduction techniques help reduce the load on the system,
allowing Dask to effectively scale the training process [25].

The final stage is the use of clusters for computation, which makes it possible to scale the computation
and process large amounts of data without overloading resources.

Such a pipeline allows for fast and efficient data processing, reducing the load on the system thanks to
parallel computing and data reduction techniques.

Evaluation of dimensionality reduction methods.

In this section, we will examine the efficiency and performance of code implementations of data
reduction techniques, such as PCA, ICA, and LDA. For each of these decompositions, three separate
measurements were performed with different component values, which allowed us to evaluate their behavior
under varying parameter conditions. The purpose of this analysis is not only to verify the accuracy of the models
but also to determine their robustness and the time resources required to perform cross-validation.

Each of the tests includes the application of MLP with a cross-validation function consisting of 10
folds. This approach allows us to obtain 10 accuracy values for each of the tests, which are subsequently used
to analyze and compare the results between different data reduction techniques. In addition, an important aspect
is to determine the cross-validation computation time for each of the experiments, which helps in assessing the
resource efficiency of different methods.

Metrics.

The following metrics are used to evaluate the performance of the models in this study: accuracy,
robustness, fl_weighted, roc_auc_ovr_weighted, and computation time. The mathematical equations of these
are as follows:
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TP
aceuracy = rp TN L FP+FN

precision =

TP + FP
TP
reCat = TP ¥ FN

precision * recall

1_weighted = 2
f1weighte i precision + recall
1

roc_auc_ovr_weighted = J TPR(t)dFPR(t)
0

where TP = True Positive, TN = True Negative, F'P = False Positive, and FN = False Negative, TPR —
True Positive Rat, FPR — False Positive Rate [26].

Together, these metrics provide a comprehensive picture of the quality of models, determining not
only their accuracy, but also their ability to adapt to different testing conditions, their performance on large
data sets, and their ability to correctly classify even in complex situations with class imbalance.

Since metrics are used to evaluate models, they reflect the accuracy, classification ability, and
robustness of the model. Representing these metrics as a scalar allows you to reduce the values obtained
during cross-validation to a single indicator for each metric, simplifying model comparisons.

This has the advantage over the arithmetic mean, which can be sensitive to extreme values or
anomalous samples. The scalar value gives a more stable and generalized assessment of the model, reducing
the influence of individual folds that may differ from the general trend. Thus, using a scalar for metrics
provides a more objective and accurate assessment of the model's performance.

Evaluation of PCA.

In this test, PCA was used to reduce the dimensionality of the input data. The number of components
was selected based on the retained variance, namely 0.98, 0.99, and 0.999. This allowed us to investigate the
effect of different degrees of data compression on the performance of the model.

With a variance of 0.98, the number of features was reduced from 16 to 3, 0.99 — 5, and 0.999 — 10.
Thus, different amounts of information about the input data were retained, which affected both classification
accuracy and model stability. The features obtained after decomposition were used to train the MLP, followed
by 10-fold cross-validation, which enabled us to evaluate the classification accuracy for each test.

Figure 1 shows the values of the metrics f1 _weighted, accuracy, and roc_auc_ovr weighted after cross-
validation for all model variants, including MLP and various PCA settings.

accuracy for PCA Across 10 Folds f1_weighted for PCA Across 10 Folds roc_auc_ovr_weighted for PCA Across 10 Folds
100 ot o oo
09 74{::_'_.—_,:_\:;<' 09 741:::>>ﬂ -
098

- MLP

PCA n_components=0.98
—e~ PCAn_components=0.99
—e— PCAn_components=0.999

f1_weighted
°

Fig. 4. MLP classification metrics depending on the number of PCA components
Table 1 shows all the final values of the metrics after the calculations, including accuracy, robustness,
fl weighted, roc_auc_ovr weighted, and the computation time for each option. The data in the table allows us
to compare the effectiveness of different approaches and choose the optimal option for a specific problem,
taking into account both accuracy and processing time.
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Table 1. Metric results for models using PCA

Method MLP PCA, PCA, PCA,
n_components=0.98 | n_components=0.99 | n_components=0.999
Accuracy scalar 2.901777 1.459408 2.269285 2.818502
Robustness 0.027762 0.001653 0.001349 0.0014064
fl_weighted scalar [2.898321 1.413019 2.264443 2.819112
roc_auc_ovr_weighted [3.154061 2.857855 3.085097 3.150142
scalar

Computation time 8679.3 2040.66 2595.61 5937.73

The model without PCA showed the best results in all metrics: accuracy (2.901777), f1 _weighted
(2.898321), and roc_auc_ovr weighted (3.154061). This indicates a high ability of the model to correctly
classify the data. However, the computation time was the largest among all options — computation time 8679.3
seconds. The robustness of the model accuracy was 0.027762, which is a fairly good indicator of the robustness
of the model with different data. When applying PCA with n_components=0.98, which preserves 98% of the
variation, the accuracy decreased. The accuracy value became 1.459408, and fl1 weighted decreased to
1.413019. Although the roc_auc_ovr weighted metric decreased to 2.857855, the model remained quite stable,
with reduced robustness (0.001653). The computation time was significantly reduced to 2040.66 seconds,
making this option suitable when processing time is critical.

By increasing the n_components parameter to 0.99, the accuracy and robustness improved, with
accuracy 2.269285 and fl weighted 2.264443. The roc auc ovr weighted value reached 3.085097. This
option showed a good balance between accuracy and computation time, with computation time 2595.61
seconds. Robustness remained high, with 0.001349.

In the variant with n_components=0.999, which preserves 99.9% of the variation, the results became
almost identical to the MLP without PCA. The accuracy value reached 2.818502, f1 _weighted —2.819112, and
roc_auc_ovr_weighted — 3.150142. The computation time decreased to computation time 5937.73 seconds,
which makes this variant the optimal compromise between accuracy, robustness, and computation time.

In general, for tasks where accuracy and robustness are critical, it is best to use PCA with
n_components=0.999 or 0.99, as they give results that are close to the MLP without PCA, with reduced
computation time. If the main thing is to reduce computation time with some loss of accuracy, then the option
with n_components=0.98 may be acceptable, although with a noticeable decrease in results according to the
fl_weighted and roc_auc ovr weighted metrics.

Evaluation of ICA.

In this section, we will focus on using ICA as a matrix decomposition method. We conducted three
separate tests, in which the parameter n_components was assigned values of 3, 8, and 10, where the
dimensionality reduction resulted in the corresponding number of classes. After applying ICA to the input data,
the resulting components were fed to an MLP, which was trained and evaluated using 10-fold cross-validation.

Figure 5 shows the values of the metrics f1 _weighted, accuracy, and roc_auc_ovr weighted after cross-
validation for variants using ICA, where the number of components varies from 3 to 10.
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accuracy for ICA Across 10 Folds f1_weighted for ICA Across 10 Folds roc_auc_ovr_weighted for ICA Across 10 Folds
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Fig. 5. MLP classification metrics depending on the number of ICA components
Table 2 shows the final values of the metrics after calculations, including accuracy, f1 _weighted,
roc_auc_ovr_weighted, and computation time for each variant. This data allows us to compare the effectiveness

of different ICA variants and choose the most suitable one for a specific task.

Table 2. Metric results for models using ICA

Method ICA, ICA, ICA, n_components=10
n_components=3 n_components=8
Accuracy 1.459989 2.627146 2.818024
scalar
Robustness 0.001395 0.001337 0.001551
f1_weighted 1.414423 2.626093 2.819056
scalar
roc_auc_ovr_ 2.857514 3.129153 3.15034
weighted
scalar
Computation 1922.93 5209.5 5939.67
time

For the ICA variant with n_components=3, the accuracy decreased significantly: accuracy reached
1.459989, f1 weighted reached 1.414423, and roc auc ovr weighted decreased to 2.857514. Despite the
decrease in accuracy, the computation time was significantly shorter — 1922.93 seconds. The robustness in this
variant remained at 0.001395, indicating a high sensitivity of the model to changes in the data.

When the number of components was increased to 8, the accuracy improved. Accuracy reached
2.627146, f1_weighted became 2.626093, and roc_auc_ovr weighted reached 3.129153. The computation time
of this variant was consumed_time 5209.5 seconds, which is longer than for n_components=3, but significantly
shorter than for MLP without ICA. The robustness remained at a good level of 0.001337.

In the variant where 10 components are stored, the accuracy became the highest among all ICA variants.
Accuracy reached 2.818024, f1 _weighted was 2.819056, and roc_auc_ovr_weighted was 3.15034. This variant
also demonstrated the best robustness, with a value of 0.001551. The computation time of this variant was
5939.67 seconds, which is on par with PCA at n_components=0.999.

Overall, the results show that when using ICA, the number of components significantly affects the
accuracy and computation time. If accuracy and robustness are the main metrics, ICA with n_components=10
is the best option, as it gives the best results with moderate computation time. If reducing computation time is
a priority, ICA with n_components=3 may be an acceptable option, although with a noticeable decrease in
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accuracy. ICA with n_components=8 provides a good balance between accuracy and speed and is a good
compromise for most problems.

Evaluation of LDA.

We now turn to the results obtained from using LDA. In the experiments, the parameter n_components
was set to 3, 8, and 13, which corresponded to the respective number of features. The resulting data was passed
to the MLP model, and classification performance was evaluated using 10-fold cross-validation.

Figure 6 shows the values of the metrics f1 _weighted, accuracy, and roc_auc_ovr weighted after cross-
validation for variants using LDA, where the number of components varies from 3 to 13.

accuracy for LDA Across 10 Folds f1_weighted for LDA Across 10 Folds roc_auc_ovr_weighted for LDA Across 10 Folds
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Fig. 6. MLP classification metrics depending on the number of LDA components

Table 3 shows the results for three LDA variants: with 3, 8, and 13 components. All of these variants
showed different results in terms of accuracy and the ability of the model to distinguish between classes.

Table 3. Metric results for models using LDA

Method LDA, LDA, LDA,
n_components=3 [ n_components=8 n_components=13
Accuracy scalar 0.579981 1.991004 2.884275
Robustness 0.00098 0.001539 0.000788
fl weighted scalar 0.534332 1.991676 2.884082
roc_auc_ovr_weighted 2.270142 3.025835 3.154652
scalar

Computation time 1493.27 4816.02 5706.26

For the LDA variant with 3 components, the accuracy was significantly lower, with accuracy 0.579981,
fl_weighted — 0.534332, and roc_auc ovr weighted decreased to 2.270142. The computation time was
significantly shorter — 1493.27 seconds, which makes this variant suitable for tasks where reducing processing
time is a priority. The robustness in this variant was very high, 0.00098.

Increasing the number of components to 8 allowed for improving the accuracy. Accuracy increased to
1.991004, f1_weighted became 1.991676, and roc_auc _ovr weighted reached 3.025835. The computation time
of this variant was 4816.02 seconds. Robustness remained at a good level, with 0.001539.

The variant that stores 13 components performed the best among all LDA variants. Accuracy reached
2.884275, f1_weighted — 2.884082, and roc auc ovr weighted was 3.154652. The computation time was
5706.26 seconds, which is longer than in the variants with a smaller number of components. Robustness was
very high — 0.000788.
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The LDA method showed that with an increase in the number of components, the accuracy and
robustness of the model improve significantly, although the computation time increases. The variant with
n_components=13 gave the best results in terms of accuracy and robustness, making it the optimal choice for
tasks where high accuracy is important. If computation time is critical, you can use n_components=8, which
provides a good balance between accuracy and computation time. For very fast calculations, but with less
accuracy, you can use n_components=3.

Conclusions.

According to the results obtained using different dimensionality reduction methods — PCA, ICA, and
LDA, the choice of method and number of components significantly affects the performance of the model.
Each method has its own advantages depending on the main goal: maximizing accuracy, optimizing
computation time, or a balance between these two parameters. PCA showed the best results at higher values of
n_components, withn_components=0.999 providing results closest to the baseline MLP classifier. This method
is especially useful when accuracy is the main priority and computation time is of secondary importance. The
model showed strong f1_weighted 2.819112, accuracy 2.818502, and roc_auc_ovr_weighted 3.150142, while
the computation time was acceptable, 5937.73 seconds. However, for cases where processing time is critical,
PCA with n_components=0.98 may be a better compromise, albeit with a slight loss in accuracy.

ICA with n_components=10 also showed good results in terms of accuracy, f1 weighted — 2.819056
and roc_auc _ovr weighted — 3.15034, demonstrating a good balance between processing efficiency and model
accuracy. For applications where faster results are needed without significant loss of accuracy, ICA with
n_components=3 may be an acceptable choice, although accuracy is reduced.

As for LDA, this method showed moderate results, but variants with different numbers of components
had a significant difference in performance. At n_components=13, LDA showed the best accuracy —2.884275,
fl weighted — 2.884082, and roc auc ovr weighted — 3.154652, indicating that a larger number of
components is more beneficial for tasks where both accuracy and robustness of the model are critical. However,
this is accompanied by an increased computation time — 5706.26 seconds. For tasks where computation time is
important, LDA with n_components=8 can be used, which provides a good compromise between accuracy and
speed, although with some loss of accuracy. In general, for most tasks where accuracy and robustness of the
model are important, PCA with n_components=0.999 and LDA with n_components=13 are the optimal
choices, although these methods require more computation resources. If the main concern is to reduce
computation time, PCA with n_components=0.98 and ICA with n_components=3 may be acceptable, although
with losses in accuracy. The ideal choice depends on the specific requirements of the problem, in particular,
the balance between accuracy and computation time.

Overall, all data reduction methods have demonstrated the potential to significantly improve model
robustness and reduce computing load without significant loss of accuracy. This is especially important for
applications in the field of bionic devices, where stable and fast biosignal processing is a critical condition for
effective human-machine interaction. The usage of data reduction methods such as PCA, ICA, and LDA can
serve as an important step towards creating more adaptive and realistic next-generation BCls.
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