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HIGH-PERFORMANCE COMPUTING FOR MACHINE LEARNING AND ARTIFICIAL 
INTELLIGENCE IN BRAIN-COMPUTER INTERFACES WITH BIG DATA 

 
Stefanyshyn I., Pastukh O. High-Performance Computing for Machine Learning and Artificial Intelligence in Brain-

Computer Interfaces with Big Data. The article explores approaches to optimizing the processing of big data of EEG signals in BCI 
by combining dimensionality reduction methods and HPC. The relevance of the problem is due to the fact that modern BCIs generate 
large datasets of signals, the processing of which in real time often creates a critical load on hardware and software resources. The aim 
of the work is to establish an optimal balance between classification accuracy, model robustness, and data processing time using various 
dimensionality reduction methods – PCA, ICA, LDA – in combination with the MLP classifier and the Dask library for parallel 
calculations. A series of experiments was conducted by varying the number of components for each decomposition. It was found that 
when using PCA with n_components=0.999 or LDA with n_components=13, the accuracy and f1_weighted remain practically the same 
as in the model without dimensionality reduction, but the processing time is reduced by 1.5-4 times, depending on the settings. The use 
of fewer components allows for even higher performance, but is accompanied by a noticeable decrease in accuracy, which is critical for 
neuroengineering and rehabilitation tasks. The use of Dask for organizing parallel calculations made it possible to effectively scale 
experiments and avoid excessive load on individual system nodes. A comparative analysis of the accuracy, robustness, f1_weighted, 
roc_auc_ovr_weighted metrics and execution time showed that the optimal settings of matrix layouts allow preserving key information 
in the signal without significant loss of classification quality. The developed approach has proven its effectiveness for tasks where 
resource limitations are combined with requirements for stability and accuracy of the system in real-time mode. The practical value of 
the results lies in the possibility of adapting the proposed pipeline for a wide range of biomedical and engineering applications, where 
speed, reliability, and robustness of brain signal processing are critical. 

Keywords: machine learning, electroencephalogram, motor imagery, high-performance computing, big data, information 
technologies, brain-computer interfaces 

 
Стефанишин І. М., Пастух О. А. Високопродуктивні обчислення для машинного навчання та штучного 

інтелекту в інтерфейсах мозок-комп'ютер з великими даними. У статті досліджено підходи до оптимізації обробки великих 
обсягів EEG даних у BCI шляхом поєднання методів зменшення розмірності і високопродуктивних обчислень. Актуальність 
проблеми обумовлена тим, що сучасні BCI генерують великі масиви сигналів, обробка яких у реальному часі часто створює 
критичне навантаження на апаратні та програмні ресурси. Метою роботи є встановлення оптимального балансу між точністю 
класифікації, стійкістю моделей і часом обробки даних за допомогою різних методів зменшення розмірності – PCA, ICA, LDA 
– у комбінації з класифікатором MLP і бібліотекою Dask для паралельних розрахунків. Проведено серію експериментів із 
варіюванням кількості компонентів для кожного розкладу. Встановлено, що при використанні PCA з n_components=0.999 або 
LDA з n_components=13 точність і f1_weighted залишаються практично такими ж, як у моделі без зменшення розмірності, 
проте час обробки зменшується у 1,5-4 рази залежно від налаштувань. Використання меншої кількості компонентів дозволяє 
досягати ще більшої швидкодії, однак супроводжується помітним зниженням точності, що є критичним для завдань 
нейроінженерії та реабілітації. Застосування Dask для організації паралельних розрахунків дало змогу ефективно 
масштабувати експерименти та уникнути надмірного навантаження на окремі вузли системи. Порівняльний аналіз метрик 
accuracy, стійкості, f1_weighted, roc_auc_ovr_weighted і часу виконання показав, що оптимальні налаштування матричних 
розкладів дають змогу зберігати ключову інформацію в сигналі без істотної втрати якості класифікації. Розроблений підхід 
довів свою ефективність для задач, де обмеженість ресурсів поєднується з вимогами до стійкості й точності роботи системи в 
режимі реального часу. Практична цінність результатів полягає в можливості адаптації запропонованого пайплайна для 
широкого спектра біомедичних та інженерних застосувань, де критичними є швидкість, надійність та масштабованість 
обробки сигналів мозку. 

Ключові слова: машинне навчання, електроенцефалограма, рухова візуалізація, високопродуктивні обчислення, 
великі дані, інформаційні технології, інтерфейси мозку та комп'ютера 

 
Formulation of the problem. 
BCIs are a cutting-edge technology that opens up new horizons in human-machine interaction. They 

are already used in medical fields, neurorehabilitation, mind control of devices, as well as in augmented and 
virtual reality [1, 16, 21]. Thanks to the ability to read and analyze EEG and other neural signals, these systems 
help people with disabilities, improve treatments for neurological disorders, and are even used in the eSports 
field to analyze cognitive processes. 

https://doi.org/10.36910/6775-2524-0560-2025-59-34
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However, the work of BCI is associated with serious challenges. One of the main ones is the processing 
of large volumes of data. Every second of BCI operation generates many signals that need to be analyzed 
quickly and accurately [2]. However, not all of this data is equally important: some contains critical 
information, while others can only create an unnecessary load on computing resources. Therefore, the 
efficiency of BCI operation largely depends on the ability to separate the necessary data from the irrelevant 
ones, optimizing the process of their processing[3]. 

The usage of methods for reducing the amount of processed data is an important step in ensuring high 
speed and accuracy of neural signal recognition. Important signals have priority access to computing power, 
while less important ones can be filtered or aggregated to reduce the overall load [4]. This approach allows not 
only to speed up the operation of BCI, but also to reduce power consumption and increase the overall robustness 
of the system. 

In this article, we will consider which data is crucial for the operation of BCI, what factors determine 
its importance, and how to effectively reduce unnecessary data without losing the accuracy of the system. 
Analysis of these aspects will allow a better understanding of how to optimize computing processes and 
improve the performance of modern BCIs. 

An analysis of the latest research and publications. 
This work is a continuation of our previous research [5-8], in which we investigated the robustness, 

accuracy, and computational efficiency of various machine learning algorithms for EEG signal classification 
in BCI systems. Building on the results obtained earlier, this study focuses on the practical implementation of 
dimensionality reduction techniques and parallel computing tools to further improve the robustness and 
effectiveness of BCI algorithms when working with large-scale neural datasets. The current analysis develops 
the proposed methodological framework and provides a more in-depth comparative assessment of 
dimensionality reduction strategies under different experimental conditions. 

Recent advances in data dimensionality reduction and machine learning have led to the development 
of a variety of methods that improve the accuracy and efficiency of classification models. Dimensionality 
reduction methods, such as PCA, ICA, and LDA, have become the main steps in data preprocessing in many 
scientific works, especially in the context of EEG signal classification and motor activity prediction [9-22]. 
These methods allow for the reduction of the complexity of datasets while preserving important information, 
which in turn improves the performance of models. 

PCA is actively used in research due to its ability to reduce the number of features while preserving as 
much variation as possible in the dataset. For example, in a study conducted by Djelloul K. and Belkacem A.N. 
[9], PCA was used to classify EEG signals, which allowed for simplifying the feature space before applying 
classifiers such as MLP. ICA, on the other hand, is particularly useful for separating independent sources in 
mixed signals, which is important in neurocomputing tasks. A study by Vélez-Lora H.J. et al. [10] showed how 
ICA can be used to extract independent components from EEG signals, which significantly improves 
classification accuracy in motor imagery tasks. 

LDA, which provides maximum separation between different classes, is also an important tool in the 
feature selection process. In the work of Kabir M.H. et al. [11], LDA was applied to select the most 
discriminative features before using classification algorithms, which ensures high-quality results when further 
training models. 

One of the main directions of modern research is the integration of high-performance computing (HPC) 
into machine learning. HPC allows for a significant increase in the speed of processing large amounts of data 
and reduces the time to train models. In the study of Kabir M.H. and colleagues [11], have shown how the use 
of parallel computing can accelerate the process of feature extraction and classification, which is critical for 
real-world applications in medicine and neurocomputer interfaces. Optimization techniques, including the use 
of multithreading and GPU acceleration, are actively used to reduce computational costs, allowing for efficient 
processing of large data sets. 

Optimization of computation is key to processing large data sets and improving model performance, 
which is especially important for practical applications in areas such as neuroengineering and biomedical signal 
processing. HPC significantly reduces processing time, which is important for real-world applications of 
models in living systems. 
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Therefore, recent studies emphasize the importance of using dimensionality reduction methods such as 
PCA, ICA, and LDA in combination with HPC to optimize machine learning. These approaches are important 
for solving complex tasks in the analysis of large data sets, such as EEG signal classification and motor 
movement prediction. 

Formulation of the purpose and objectives of the research. 
In previous studies, we performed calculations based on the full set of data obtained from BCIs [5-8]. 

This approach allowed us to achieve maximum accuracy and robustness, but also created a significant load on 
computing resources, which could affect the system’s processing speed and overall efficiency. Up to now, we 
have not conducted a systematic analysis of which data are most significant for BCI operations and whether 
their number can be reduced without significant losses in performance. 

This article aims to investigate the possibility of reducing the amount of processed data without 
significantly affecting the accuracy, robustness, and computation time of BCIs. We propose methods that allow 
us to reduce the load on the system by discarding less significant data. The selection of relevant information is 
based on the analysis of its impact on the results of calculations and the efficiency of the algorithms. 

In this study, we will perform a comparative analysis of the obtained results, comparing the 
performance of the BCI algorithms when using the full amount of data with the performance after applying the 
optimized approach. The performance evaluation will be based on many metrics. 

We will also investigate the impact of different filtering parameters on the system performance to 
determine the optimal settings that will minimize the loss of accuracy while reducing the amount of 
computation. This will allow us to form clearer conclusions regarding the possibility of using selective data 
processing in BCIs and offer recommendations for future research in this area. 

Presenting the main material. 
This study is based on a real-world experiment in which we used the NEUROKOM computer-based 

electroencephalograph [23] to collect EEG data during the execution of test tasks (Fig. 1). The main goal of the 
experiment was to obtain accurate and detailed recordings of brain activity, allowing us to better understand 
which signals are key to BCI operations and which can be filtered out without significant loss of accuracy. 

 

 
Fig. 1. Photo taken during the experiment 

 
Several EEG data files were collected during the experiment. The following image shows an example 

of one such file, demonstrating characteristic patterns of brain activity during the test task (Fig. 2). 
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Fig. 2. Illustration of EEG signals during little finger movements 

The collected data are extremely large in volume, as the brain generates a significant amount of 
information every second. Processing such large data sets requires significant computing resources and time. 
This can create a high load on the BCI, affecting its speed and robustness. That is why one of the key aspects 
of this research is to identify less significant data that can be filtered out without critical losses in accuracy. 

Explanation of investigation. 
Our algorithm is based on a classification task, where we use the MLP to analyze the collected EEG 

data. MLP is an effective choice due to its ability to perform parallel computations, which is especially 
important for working with large amounts of data, as in our case. The MLP structure allows us to calculate the 
weights of neurons in different layers simultaneously, using multiple computing cores, which significantly 
reduces the training time of the model [24]. 

To optimize the computations and increase the efficiency of working with large data sets, we use the 
Dask library. It is a powerful tool for parallelizing computations, which allows us to distribute tasks across 
multiple processors or even a cluster of servers [25]. One of the main advantages of Dask is that it integrates 
with popular scientific computing libraries such as NumPy, Pandas, and Scikit-learn, making it highly suitable 
for our current task. 

In our experiment, to reduce the amount of data to be processed, we apply dimensionality reduction 
methods, which allow us to preserve important information while reducing the amount of data that needs to be 
processed. This is especially important when working with large datasets such as EEG. 

One of the main methods we use is PCA. PCA reduces the number of dimensions in the data by 
identifying principal components that retain the most variability in the data. This allows us to reduce the 
dimensionality without significantly losing important information. With PCA, we can transform the data into 
new axes that represent linear combinations of the original features, thus simplifying the calculations [24]. 

Another important method is ICA, which focuses on finding statistically independent components. ICA 
is particularly useful in signal analysis, as in the case of EEG, where the signals may be mixed due to noise or 
artifacts. It allows us to isolate cleaner components that can be useful for classification, reducing the number 
of features needed [24]. 

LDA is another method used to reduce dimensionality with a focus on maximizing the separation 
between classes in the data. LDA allows us to preserve the greatest separation between classes, which makes 
it useful for classification tasks. This method helps not only reduce the number of features, but also improves 
classification accuracy by preserving important linear distinctions between classes [24]. 

The usage of these methods allows us to reduce the amount of data to be processed while preserving 
the essential information necessary for classification. They allow us to optimize the processing process and 
reduce the load on the system, which is important for achieving high efficiency and accuracy in processing 
large data sets. 

For each of the dimensionality reduction methods, we will conduct three measurements with different 
settings for the number of components. The first measurement will be carried out with a large number of 
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components to preserve as much information from the data as possible. The second measurement involves the 
use of a small number of components, which will reduce the amount of data and reduce computational 
complexity, although with some loss of accuracy. The third measurement will include the optimal number of 
components, which will provide a balance between reducing the size of the data and maintaining sufficient 
accuracy for subsequent classification. 

This approach will make it possible to evaluate how different settings for the number of components 
affect the accuracy and efficiency of models, and will also help to choose the optimal parameters for each of 
the methods in the context of a specific problem. 

Explaining the calculation pipeline. 
In our study, we use a pipeline that includes Scikit-learn, Joblib, Dask, clusters, and matrix 

decomposition methods. 
Initially, we used Scikit-learn to build the classification model. The MLP classifier is chosen due to its 

ability to perform parallel computations, which allows for efficient handling of large datasets. We also apply 
data reduction methods such as PCA at the data preprocessing stage, which reduces the complexity of the model 
without losing important information [24-25]. 

 

 
Fig. 3. Software–hardware computer calculation pipeline [25] 

 
After training the model, we use Joblib to serialize it and save it quickly, which avoids retraining. 
Dask integrates to distribute the computation across multiple cores or nodes in a cluster, which speeds 

up the processing of large data sets. In addition, data reduction techniques help reduce the load on the system, 
allowing Dask to effectively scale the training process [25]. 

The final stage is the use of clusters for computation, which makes it possible to scale the computation 
and process large amounts of data without overloading resources. 

Such a pipeline allows for fast and efficient data processing, reducing the load on the system thanks to 
parallel computing and data reduction techniques. 

Evaluation of dimensionality reduction methods. 
In this section, we will examine the efficiency and performance of code implementations of data 

reduction techniques, such as PCA, ICA, and LDA. For each of these decompositions, three separate 
measurements were performed with different component values, which allowed us to evaluate their behavior 
under varying parameter conditions. The purpose of this analysis is not only to verify the accuracy of the models 
but also to determine their robustness and the time resources required to perform cross-validation. 

Each of the tests includes the application of MLP with a cross-validation function consisting of 10 
folds. This approach allows us to obtain 10 accuracy values for each of the tests, which are subsequently used 
to analyze and compare the results between different data reduction techniques. In addition, an important aspect 
is to determine the cross-validation computation time for each of the experiments, which helps in assessing the 
resource efficiency of different methods. 

Metrics. 
The following metrics are used to evaluate the performance of the models in this study: accuracy, 

robustness, f1_weighted, roc_auc_ovr_weighted, and computation time. The mathematical equations of these 
are as follows: 
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𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑓1_𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

 

𝑟𝑜𝑐_𝑎𝑢𝑐_𝑜𝑣𝑟_𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = ;
1

0
𝑇𝑃𝑅(𝑡)𝑑𝐹𝑃𝑅(𝑡) 

where TP = True Positive, TN = True Negative, FP = False Positive, and FN = False Negative, TPR – 
True Positive Rat, FPR – False Positive Rate [26]. 

Together, these metrics provide a comprehensive picture of the quality of models, determining not 
only their accuracy, but also their ability to adapt to different testing conditions, their performance on large 
data sets, and their ability to correctly classify even in complex situations with class imbalance. 

Since metrics are used to evaluate models, they reflect the accuracy, classification ability, and 
robustness of the model. Representing these metrics as a scalar allows you to reduce the values obtained 
during cross-validation to a single indicator for each metric, simplifying model comparisons. 

This has the advantage over the arithmetic mean, which can be sensitive to extreme values or 
anomalous samples. The scalar value gives a more stable and generalized assessment of the model, reducing 
the influence of individual folds that may differ from the general trend. Thus, using a scalar for metrics 
provides a more objective and accurate assessment of the model's performance. 

Evaluation of PCA. 
In this test, PCA was used to reduce the dimensionality of the input data. The number of components 

was selected based on the retained variance, namely 0.98, 0.99, and 0.999. This allowed us to investigate the 
effect of different degrees of data compression on the performance of the model. 

With a variance of 0.98, the number of features was reduced from 16 to 3, 0.99  – 5, and 0.999 – 10. 
Thus, different amounts of information about the input data were retained, which affected both classification 
accuracy and model stability. The features obtained after decomposition were used to train the MLP, followed 
by 10-fold cross-validation, which enabled us to evaluate the classification accuracy for each test. 

Figure 1 shows the values of the metrics f1_weighted, accuracy, and roc_auc_ovr_weighted after cross-
validation for all model variants, including MLP and various PCA settings. 

 

 
Fig. 4. MLP classification metrics depending on the number of PCA components 

Table 1 shows all the final values of the metrics after the calculations, including accuracy, robustness, 
f1_weighted, roc_auc_ovr_weighted, and the computation time for each option. The data in the table allows us 
to compare the effectiveness of different approaches and choose the optimal option for a specific problem, 
taking into account both accuracy and processing time. 
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Table 1. Metric results for models using PCA 

Method MLP PCA, 
n_components=0.98 

PCA, 
n_components=0.99 

PCA, 
n_components=0.999 

Accuracy scalar 2.901777 1.459408 2.269285 2.818502 

Robustness 0.027762 0.001653 0.001349 0.001464 

f1_weighted scalar 2.898321 1.413019 2.264443 2.819112 

roc_auc_ovr_weighted 
scalar 

3.154061 2.857855 3.085097 3.150142 

Computation time 8679.3 2040.66 2595.61 5937.73 

 
The model without PCA showed the best results in all metrics: accuracy (2.901777), f1_weighted 

(2.898321), and roc_auc_ovr_weighted (3.154061). This indicates a high ability of the model to correctly 
classify the data. However, the computation time was the largest among all options – computation time 8679.3 
seconds. The robustness of the model accuracy was 0.027762, which is a fairly good indicator of the robustness 
of the model with different data. When applying PCA with n_components=0.98, which preserves 98% of the 
variation, the accuracy decreased. The accuracy value became 1.459408, and f1_weighted decreased to 
1.413019. Although the roc_auc_ovr_weighted metric decreased to 2.857855, the model remained quite stable, 
with reduced robustness (0.001653). The computation time was significantly reduced to 2040.66 seconds, 
making this option suitable when processing time is critical. 

By increasing the n_components parameter to 0.99, the accuracy and robustness improved, with 
accuracy 2.269285 and f1_weighted 2.264443. The roc_auc_ovr_weighted value reached 3.085097. This 
option showed a good balance between accuracy and computation time, with computation time 2595.61 
seconds. Robustness remained high, with 0.001349. 

In the variant with n_components=0.999, which preserves 99.9% of the variation, the results became 
almost identical to the MLP without PCA. The accuracy value reached 2.818502, f1_weighted – 2.819112, and 
roc_auc_ovr_weighted – 3.150142. The computation time decreased to computation time 5937.73 seconds, 
which makes this variant the optimal compromise between accuracy, robustness, and computation time.  

In general, for tasks where accuracy and robustness are critical, it is best to use PCA with 
n_components=0.999 or 0.99, as they give results that are close to the MLP without PCA, with reduced 
computation time. If the main thing is to reduce computation time with some loss of accuracy, then the option 
with n_components=0.98 may be acceptable, although with a noticeable decrease in results according to the 
f1_weighted and roc_auc_ovr_weighted metrics. 

Evaluation of ICA. 
In this section, we will focus on using ICA as a matrix decomposition method. We conducted three 

separate tests, in which the parameter n_components was assigned values of 3, 8, and 10, where the 
dimensionality reduction resulted in the corresponding number of classes. After applying ICA to the input data, 
the resulting components were fed to an MLP, which was trained and evaluated using 10-fold cross-validation. 

Figure 5 shows the values of the metrics f1_weighted, accuracy, and roc_auc_ovr_weighted after cross-
validation for variants using ICA, where the number of components varies from 3 to 10. 
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Fig. 5. MLP classification metrics depending on the number of ICA components 

 
Table 2 shows the final values of the metrics after calculations, including accuracy, f1_weighted, 

roc_auc_ovr_weighted, and computation time for each variant. This data allows us to compare the effectiveness 
of different ICA variants and choose the most suitable one for a specific task. 

 
Table 2. Metric results for models using ICA 

Method ICA, 
n_components=3 

ICA, 
n_components=8 

ICA, n_components=10 

Accuracy 
scalar 

1.459989 2.627146 2.818024 

Robustness 0.001395 0.001337 0.001551 

f1_weighted 
scalar 

1.414423 2.626093 2.819056 

roc_auc_ovr_
weighted 

scalar 

2.857514 3.129153 3.15034 

Computation 
time 

1922.93 5209.5 5939.67 

 
For the ICA variant with n_components=3, the accuracy decreased significantly: accuracy reached 

1.459989, f1_weighted reached 1.414423, and roc_auc_ovr_weighted decreased to 2.857514. Despite the 
decrease in accuracy, the computation time was significantly shorter – 1922.93 seconds. The robustness in this 
variant remained at 0.001395, indicating a high sensitivity of the model to changes in the data. 

When the number of components was increased to 8, the accuracy improved. Accuracy reached 
2.627146, f1_weighted became 2.626093, and roc_auc_ovr_weighted reached 3.129153. The computation time 
of this variant was consumed_time 5209.5 seconds, which is longer than for n_components=3, but significantly 
shorter than for MLP without ICA. The robustness remained at a good level of 0.001337. 

In the variant where 10 components are stored, the accuracy became the highest among all ICA variants. 
Accuracy reached 2.818024, f1_weighted was 2.819056, and roc_auc_ovr_weighted was 3.15034. This variant 
also demonstrated the best robustness, with a value of 0.001551. The computation time of this variant was 
5939.67 seconds, which is on par with PCA at n_components=0.999. 

Overall, the results show that when using ICA, the number of components significantly affects the 
accuracy and computation time. If accuracy and robustness are the main metrics, ICA with n_components=10 
is the best option, as it gives the best results with moderate computation time. If reducing computation time is 
a priority, ICA with n_components=3 may be an acceptable option, although with a noticeable decrease in 
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accuracy. ICA with n_components=8 provides a good balance between accuracy and speed and is a good 
compromise for most problems. 

Evaluation of LDA. 
We now turn to the results obtained from using LDA. In the experiments, the parameter n_components 

was set to 3, 8, and 13, which corresponded to the respective number of features. The resulting data was passed 
to the MLP model, and classification performance was evaluated using 10-fold cross-validation.  

Figure 6 shows the values of the metrics f1_weighted, accuracy, and roc_auc_ovr_weighted after cross-
validation for variants using LDA, where the number of components varies from 3 to 13. 

 

 
Fig. 6. MLP classification metrics depending on the number of LDA components 

 
Table 3 shows the results for three LDA variants: with 3, 8, and 13 components. All of these variants 

showed different results in terms of accuracy and the ability of the model to distinguish between classes. 
 
Table 3. Metric results for models using LDA 

Method LDA, 
n_components=3 

LDA, 
n_components=8 

LDA, 
n_components=13 

Accuracy scalar 0.579981 1.991004 2.884275 

Robustness 0.00098 0.001539  0.000788 

f1_weighted scalar 0.534332 1.991676 2.884082 

roc_auc_ovr_weighted 
scalar 

 2.270142 3.025835 3.154652 

Computation time 1493.27 4816.02 5706.26 

 
For the LDA variant with 3 components, the accuracy was significantly lower, with accuracy 0.579981, 

f1_weighted – 0.534332, and roc_auc_ovr_weighted decreased to 2.270142. The computation time was 
significantly shorter – 1493.27 seconds, which makes this variant suitable for tasks where reducing processing 
time is a priority. The robustness in this variant was very high, 0.00098. 

Increasing the number of components to 8 allowed for improving the accuracy. Accuracy increased to 
1.991004, f1_weighted became 1.991676, and roc_auc_ovr_weighted reached 3.025835. The computation time 
of this variant was 4816.02 seconds. Robustness remained at a good level, with 0.001539. 

The variant that stores 13 components performed the best among all LDA variants. Accuracy reached 
2.884275, f1_weighted – 2.884082, and roc_auc_ovr_weighted was 3.154652. The computation time was 
5706.26 seconds, which is longer than in the variants with a smaller number of components. Robustness was 
very high – 0.000788. 
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The LDA method showed that with an increase in the number of components, the accuracy and 
robustness of the model improve significantly, although the computation time increases. The variant with 
n_components=13 gave the best results in terms of accuracy and robustness, making it the optimal choice for 
tasks where high accuracy is important. If computation time is critical, you can use n_components=8, which 
provides a good balance between accuracy and computation time. For very fast calculations, but with less 
accuracy, you can use n_components=3. 

Conclusions. 
According to the results obtained using different dimensionality reduction methods – PCA, ICA, and 

LDA, the choice of method and number of components significantly affects the performance of the model. 
Each method has its own advantages depending on the main goal: maximizing accuracy, optimizing 
computation time, or a balance between these two parameters. PCA showed the best results at higher values of 
n_components, with n_components=0.999 providing results closest to the baseline MLP classifier. This method 
is especially useful when accuracy is the main priority and computation time is of secondary importance. The 
model showed strong f1_weighted 2.819112, accuracy 2.818502, and roc_auc_ovr_weighted 3.150142, while 
the computation time was acceptable, 5937.73 seconds. However, for cases where processing time is critical, 
PCA with n_components=0.98 may be a better compromise, albeit with a slight loss in accuracy. 

ICA with n_components=10 also showed good results in terms of accuracy, f1_weighted – 2.819056 
and roc_auc_ovr_weighted – 3.15034, demonstrating a good balance between processing efficiency and model 
accuracy. For applications where faster results are needed without significant loss of accuracy, ICA with 
n_components=3 may be an acceptable choice, although accuracy is reduced. 

As for LDA, this method showed moderate results, but variants with different numbers of components 
had a significant difference in performance. At n_components=13, LDA showed the best accuracy – 2.884275, 
f1_weighted – 2.884082, and roc_auc_ovr_weighted – 3.154652, indicating that a larger number of 
components is more beneficial for tasks where both accuracy and robustness of the model are critical. However, 
this is accompanied by an increased computation time – 5706.26 seconds. For tasks where computation time is 
important, LDA with n_components=8 can be used, which provides a good compromise between accuracy and 
speed, although with some loss of accuracy. In general, for most tasks where accuracy and robustness of the 
model are important, PCA with n_components=0.999 and LDA with n_components=13 are the optimal 
choices, although these methods require more computation resources. If the main concern is to reduce 
computation time, PCA with n_components=0.98 and ICA with n_components=3 may be acceptable, although 
with losses in accuracy. The ideal choice depends on the specific requirements of the problem, in particular, 
the balance between accuracy and computation time. 

Overall, all data reduction methods have demonstrated the potential to significantly improve model 
robustness and reduce computing load without significant loss of accuracy. This is especially important for 
applications in the field of bionic devices, where stable and fast biosignal processing is a critical condition for 
effective human-machine interaction. The usage of data reduction methods such as PCA, ICA, and LDA can 
serve as an important step towards creating more adaptive and realistic next-generation BCIs. 
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