Hayxoeuii srcypran "KoMir toTepHO-1HTETpOBaHI TEXHOJIOTI1: OCBiTa, HAyKa, BAPOOHUIITBO"
258 Jhyvk, 2025. Bunyck Ne 59

DOIL: https://doi.org/10.36910/6775-2524-0560-2025-59-33
YK 004.415.3

Pekh Petro, PhD

https://orcid.org/0000-0002-6327-3319

Yanchar Oleksandr, bachelor

Lutsk National Technical University, Lutsk, Ukraine

FEATURES OF MODERN TECHNOLOGY C# BLAZOR SERVER FOR WEB APPLICATIONS
DEVELOPMENT

Pekh P, Yanchar O. Features of modern technology for C# Blazor Server for web applications development. creating
web applications using C# BLAZOR SERVER. The article examines the features of using the C# Blazor Server platform using the
example of developing a web service for job search. Probably, no one disputes the statement that a convenient and fast web service for
job search is equally needed, on the one hand, by those who are looking for a job, and on the other hand, by those who offer this job.
Therefore, the development of simple and fast web services of this direction is and will be an urgent task in the future. What is the
main difficulty here? In our opinion, this is the optimal choice of the platform by means of which the web service should be created.
Based on the fact that to solve the tasks that arise in the process of job search, one cannot do without developing and using databases
containing information about both clients and employers, the advantage is on the side of platforms that provide such functionality. C#
Blazor Server belongs to such platforms.As for the main advantage of the C# Blazor Server platform, the researchers focus on the fact
that all the code is executed on the server, and the client only receives updates via SignalR. This allows the client to avoid downloading
a large amount of .NET runtime. At the same time, the requirements for the browser are reduced, since the service works even on
medium-power devices. In addition, the service is quickly started without delays in loading and compiling WebAssembly.

Keywords: C# ASP .NET platform, C# Blazor Server technology, SignalR. WebAssembly, web service

Mex ILA., Slnuap O.P. OcobamuBocti cydyacHoi Texnosorii C# Blazor Server crBopeHHsi Be0-mogarkiB. B crarti
JIOCIIKYIOTECS 0c00IMBOCTI BuKoprcTanHs miatdopmu C# Blazor Server Ha mpuknazi po3poOku BeO-cepBicy I MOIIYKy POOOTH.
MaOyTb, Hi B KOTO HE BUKJIMKAE 3alEPEUCHHS TBEPIKEHHS, IO 3pYIHUH Ta IIBUIKOIII0YHI BeO-CcepBic I MOIIyKy POOOTH OTHAKOBO
noTpiben, 3 0MHOTO OOKY, THM XTO POoOOTY IIyKae, a, 3 APYroro OOKy THM, XTO If0 poboTy mpomnoHye. Tox po3poOka MpocTHx Ta
MIBUAKOIIIOUNX BeO-cepBiciB momibHOro crpsmMyBaHHS € 1 Oyae B MaiHOyTHHOMY aKTyaJIbHOIO 3ajadero. B doMy TyT OCHOBHa
ckmaaHicts? Ha Hamry nqymKy, 1ie - onTuMansHuil BUOip miaTdopmu, 3acodamu 1koi BeG-cepBic Mae CTBOproBaTHCs. Buxomsan 3 Toro,
IO ISl BUPIMICHHS 3a/1a4, sSIKi BUHUKAIOTH Y MPOLECi MOIIyKy poOOoTH, He 00iHTHCS 63 pOo3pOOKH 1 BUKOPUCTaHHS 0a3 HaHMX, IO
MIcTATh iH(popMaIiio, sIK PO KII€HTIB, TaK 1 Ipo poOOTONABLIB, IepeBara Ha 0ot mraTdopm, sKi Takuii GpyHKITIOHAT 3a0€3MEIyIOTh.
C# Blazor Server nanexuts came 10 Takux miatdopm. lllomo ocroBHOI nepeBary miatdopmu C# Blazor Server, To yBara gociigHUKIB
aKICHTY€EThCS HA TOMY, IO YBECh KOJ BUKOHYETHCS Ha CEpBEpi, a KIIEHT JIMIIEe OTpuMye OHOBIEHHS uepe3 SignalR. Ile mo3Bomse
KII€HTY He 3aBaHTa)XyBaTH Benukui o0car .NET-panraiimy. [Ipu 1boMy 3MEHIIYIOTBCSI BAMOTH 10 Opay3epa, OCKIIBKH CepBic MPaIIoe
HaBiTh Ha CEpPEIHIX 3a MOTYXHICTIO MPHUCTPOsiX. KpiM Toro, 3abe3netdyeThes MBUAKUN CTapT CepBicy 0€3 3aTPUMKH Ha 3aBaHTAKCHHS
Ta KoMmisiro WebAssembly.

Kuarouosi cioBa: mnardopma C# ASP .NET, texnonorist C# Blazor Server, SignalR. WebAssembly, Be6-cepBic

Problem statement. The need for a fast and convenient job search remains relevant for many users,
as does the need for effective recruitment for employers. Most modern platforms are difficult to use, have high
resource requirements, or are financially inaccessible to small businesses.

Given this, there is a need to create an optimized web service that will be simple, accessible, and will
work stably even on medium-power devices.. One of the effective solutions is to use C# Blazor Server, which
allows you to implement interactive functionality with minimal load on the client side.

The purpose of the work is to study the C# Blazor Server platform in the process of developing a
web service for job search, which provides convenient and effective interaction between job seekers and
employers.

The main functions of the web service should include:

— creating a profile and resume by users;

— searching for vacancies with the ability to apply filters;

— sending feedback on vacancies;

— creation and editing of vacancies by employers.

The novelty of the work lies in the use of Blazor Server technology to develop a web service for
searching for jobs without using JavaScript on the client side. This approach allows you to implement all
business logic exclusively on the server, which significantly reduces the requirements for the client device and
ensures stable operation even on low-power systems.

The key features of the implementation are:

— saving the user interface state on the server, which guarantees data integrity and stability of
interaction;

© Pekh P., Yanchar O.

https://doi.org/10.36910/6775-2524-0560-2025-59-00
https://orcid.org/0000-0002-6327-3319

Hayxosuil srcypruan "KoMi 1oTepHO-1HTETpOBaHi TEXHOJIOTIi: 0CBiTa, HayKa, BAPOOHULITBO"
Jyyvx, 2025. Bunyck Ne 59 259

— using the SignalR protocol for two-way communication between the client and the server in real
time;

— updating the DOM on the client side without completely reloading the page, which improves
performance and is convenient for users;

—building a system based on a modern architecture with a clear distribution of functions, which ensures
easy scaling and the possibility of further expansion of functionality.

The main part. The web service developed in the work, the structure of which is shown in Figures 1
and 2, is implemented using a three-tier architecture that provides modularity, extensibility and ease of system
support:

1. Client layer — built using Razor components that implement interfaces for registration, creating
resumes and vacancies. The components provide interactivity and dynamic interaction with the user without
completely reloading the pages.

2. Server layer — includes C# classes for processing business logic and a service layer that is responsible
for interaction with the database. Communication between the client and the server is carried out via SignalR,
which allows updating the interface in real time.

3. Data storage layer — represented by a SQL Server database, the models of which are implemented
using Entity Framework Core, which provides convenient object-relational mapping (ORM) and supports data
migration.

Additional technologies used in the project. A number of modern technologies were used to
implement the functionality of the web service, ensuring scalability, security, speed, and ease of development.
Table 1 lists the main components of the system and the corresponding technologies used for their
implementation.

Table 1 — Technologies used in the project

Component Technology used

UI Components Blazor Server, CSS

ORM Entity Framework Core + LINQ
Authentication ASP.NET Core Identity
Communication SignalR

Database SQL Server

Configuration Storage appsettings.json

Security ASP.NET Middleware

System security. ASP.NET Identity is used to protect data, which provides:

— user registration with identity confirmation (email confirmation);

— authorization according to access roles;

— access restriction to confidential information;

— protection against major web threats, such as CSRF and XSS, through built-in Razor Pages
mechanisms and middleware.

Using SignalR for real-time. A feature of Blazor Server is the presence of a built-in SignalR
connection, which provides instant page updates when the status changes. For example:
— when a candidate applies for a vacancy, the employer instantly sees a new message in his personal account;
— when the application status changes, the candidate also sees the update without a reboot.

© Pekh P., Yanchar O.

Hayxosuil srcypruan "KoMi 1oTepHO-1HTETpOBaHi TEXHOJIOTIi: 0CBiTa, HayKa, BAPOOHULITBO"
Jhywk, 2025. Bunyck Ne 59

260

Solution Explorer

Bl o -s 00| [w-| £l=]

Search Solution Explorer (Ctrl+X)

53 Solution ‘BlazorJobSearch’ (1 of 1 project)
4 &1 BlazorJobSearch
4 & Connected Services

() Secrets.json (Local)
<o) SQL Server Express LocalDB (Local) (Connectio

4 &8 Dependencies

4
>
4

& Analyzers
=& Frameworks
‘® Packages

4 3 Properties

>

[() launchSettings.json
[() serviceDependencies.json

4 @ wwwroot

-

-

-

3 audio
>3 Wys_Snowman.mp3
™ bootstrap
> [A bootstrap.min.css
B js
JS sitejs
[A app.css
B3 favicon.png
JS markdown-tag.js

[A style.css

4 [Components

-

3 Account
4 [0 Pages

4 [T Manage
_Imports.razor
ChangePassword.razor
DeletePersonalData.razor
Disable2fa.razor
Email.razor
EnableAuthenticator.razor
ExternalLogins.razor
GenerateRecoveryCodes.razor
Index.razor
PersonalData.razor
ResetAuthenticator.razor
SetPassword.razor
TwoFactorAuthentication.razor
@) _Imports.razor
AccessDenied.razor
|@) ConfirmEmail.razor
@) ConfirmEmailChange.razor
ExternalLogin.razor
|@) ForgotPassword.razor
|@) ForgotPasswordConfirmation.razor
InvalidPasswordReset.razor
InvalidUser.razor
Lockout.razor

&

Login.razor

LoginWith2fa.razor
LoginWithRecoveryCode.razor
Register.razor
RegisterConfirmation.razor
ResendEmailConfirmation.razor
ResetPassword.razor
ResetPasswordConfirmation.razor

4 [71 Shared
AccountlLayout.razor
ExternalLoginPicker.razor
Managelayout.razor
@) ManageNavMenu.razor
RedirectToLogin.razor
ShowRecoveryCodes.razor
@) StatusMessage.razor
Cc#= |dentityComponentsEndpointRouteBuilde
Cc# |dentityNoOpEmailSender.cs
C# |dentityRedirectManager.cs
Cc# |dentityRevalidatingAuthenticationStateP:
C# |dentityUserAccessor.cs
4 [Layout
> MainLayout.razor
> [@ NavMenu.razor
4 [0 Pages
4 [Applications
AddJobApplication.razor
l@) CandidateApplications.razor
|@) CandidateJobRequest.razor
@) JobRequest.razor
4 [Employer
AddCompany.razor
Company.razor
|@ CompanyByld.razor
l@) DeleteCompany.razor
EditCompany.razor
4 [Job
|@) AddJob.razor
i@) Deletelob.razor
@) Editlob.razor
@) Job.razor
@) JobFound.razor
|@) Jobs.razor
4 [M JobCandidate
AddCandidate.razor
Candidate.razor
EditCandidate.razor
4 [Messages
AddMessage.razor

5

v v Vv wvyw

© Pekh P., Yanchar O.

Hayxosuil srcypruan "KoMi 1oTepHO-1HTETpOBaHi TEXHOJIOTIi: 0CBiTa, HayKa, BAPOOHULITBO"

Jhyek, 2025. Bunyck Ne 59

261

Answer.razor

Letter.razor
Letters.razor

3 Portfolio
AddPicture.razor

DeletePicture.razor

Portfolio.razor
Slide.razor
Resume

AccessDenied.razor
Auth.razor
Counter.razor
Error.razor
Home.razor

PPPEEBD

Weather.razor
_Imports.razor

© Pekh P., Yanchar O.

Hayxosuil srcypruan "KoMi 1oTepHO-1HTETpOBaHi TEXHOJIOTIi: 0CBiTa, HayKa, BAPOOHULITBO"
262 Jhywk, 2025. Bunyck Ne 59

Figure 1 — Web service structure (beginning))
App.razor
Routes.razor
4 [Data
4 [T Migrations
c= 00000000000000_CreateldentitySchema.cs
c= 20250121194857_Add_tables_1.cs
c= 20250125164945_Add_properties_in_the_JobCandidates_table.cs
c= 20250130174801_Change_property_in_the_Portfolios_table_1.cs
c= 20250131132927_Add_property_in_the_Vacancies_table_1.cs

Cc= 20250131132927_Add_property_in_the_Vacancies_table_1.cs
C® 20250202112433_Change_property_in_the_Vacancies_table_1.cs
C= 20250204164245_Change_property_in_the_Vacancies_table_2.cs
Cc= 20250212180301_Add_properties_in_the_Messages_table_1.cs
C= ApplicationDbContextModelSnapshot.cs

4 [T Models

C= Employer.cs

v vV VvV vV vV vVvVvVvVvvVvvVvyvw

C# EmploymentType.cs
C= JobApplication.cs
C# JobCandidate.cs
C# Message.cs

C# Picture.cs

C® Resume.cs

c® ShowMessage.cs
C#= Vacancy.cs

v vV vV vV vV vV vV VvV VvVVv

c= WorkingCondition.cs
P C= ApplicationDbContext.cs
P C= ApplicationUser.cs

4 [JobSearchServices
P = AppData.cs

> [() appsettings.json

P C= Program.cs

Figure 2 — Web service structure (end)

A generalized diagram of the system architecture and the interaction between its components is shown

in Figure 3.
:) -
Client SignarIR H Server “

Figure 3 — Architecture of a job search web service

To implement the functionality of the web service, a database structure was developed that reflects key
entities and their relationships. The main objects are system users (candidates and employers), resumes,
vacancies, and job reviews. The main database entities with a list of key fields are given in Table 2.

Table 2 — Main database entities
Entity Main fields
Users Id, UserName, Email, PasswordHash, Role, CreatedAt

© Pekh P., Yanchar O.

Hayxosuil srcypruan "KoMi 1oTepHO-1HTETpOBaHi TEXHOJIOTIi: 0CBiTa, HayKa, BAPOOHULITBO"

Jyyvx, 2025. Bunyck Ne 59 263
Resumes Id, Userld, FullName, Experience, Skills, Education, CreatedAt
Vacancies Id, Employerld, Title, Description, Location, EmploymentType, Salary, CreatedAt
Applications Id, Resumeld, Vacancyld, Status, AppliedAt

Relationships between database entities:

Users — stores information about system users who can be candidates or employers (defined by the Role
field).

Resumes are linked to users via the Userld field — each candidate can have one or more resumes.

Vacancies are linked to employers via the Employerld field — each employer can create multiple
vacancies.

Applications display candidate responses to vacancies by linking resumes (Resumeld) to vacancies
(Vacancyld). Thus, one candidate can apply for many vacancies, and a vacancy can receive many responses.

Main system functionalities:

— user registration and authorization with role differentiation (candidate, employer, administrator);

— viewing, searching and filtering vacancies by keywords, region, type of employment;

— creation and editing of resumes by users;

— creation, editing and publishing of vacancies by employers;

— platform administration (content moderation, user management).

User interface implementation. To provide a convenient and intuitive user interface, a set of Razor
components was created that implement sections for candidates and employers. The main emphasis is on
adaptability and dynamic content update without page reloading. Components are reused and interact through
events (EventCallback) and state services.

Communication with the server is carried out through DI services that use HttpClient or directly call
repository methods in Blazor Server. Figure 4 shows a fully functional registration page interface.

Register

Create a New Account. Join our platform!

Register to get access to:

User Role
O JobCandidate * Job listings for candidates
O Employer * The ability to create a profile for employers
* Advanced tools to boost your career
UserName
Take the opportunity to unlock new possibilities
today!
Email

Password

ConfirmPassword

Create Account

Figure 4 — Registration page interface

Scalability and hosting. To ensure scalability, Azure SignalR Service was used, which allows
processing a large number of simultaneous connections. Redis Backplane is also used, which allows the system
to scale horizontally in a clustered environment (Azure, Docker, Kubernetes).

The service is deployed on Azure App Service, using Azure SQL as the main database. Continuous
integration and delivery (CI/CD) are implemented using GitHub Actions. Configuration parameters are stored
in the appsettings.json file, and sensitive data is stored in Azure Key Vault.

© Pekh P., Yanchar O.

Hayxosuil srcypruan "KoMi 1oTepHO-1HTETpOBaHi TEXHOJIOTIi: 0CBiTa, HayKa, BAPOOHULITBO"
264 Jhyvk, 2025. Bunyck Ne 59

Conclusions.

The developed web service for job search showed the effectiveness of the approach with the execution
of business logic on the server and updating the interface via SignalR. This ensures stable operation even on
weak devices and a quick start without delays. The use of a three-tier architecture, Entity Framework Core,
ASP.NET Identity, and scalable Azure services ensures security, convenience, and the ability to expand and
improve the web service.

References
1. ASP.NET Core Blazor. Microsoft Learn: Build skills that open doors in your career. URL: https://learn.microsoft.com/en-
us/aspnet/core/blazor/?view=aspnetcore-9.0 (access date: 07.05.2025).
2. Overview of ASP.NET Core SignalR. Microsoft Learn: Build skills that open doors in your career. URL:
https://learn.microsoft.com/en-us/aspnet/core/signalt/introduction?view=aspnetcore-9.0 (access date: 07.05.2025).
3. Azure SignalR Service documentation. Microsoft Learn: Build skills that open doors in your career. URL:
https://learn.microsoft.com/en-us/azure/azure-signalt/ (access date: 07.05.2025).
4. Himschoot P. Blazor Revealed: Building Web Applications in .NET. Apress, 2019. 272 p.
5. ASP.NET Core Blazor authentication and authorization. Microsoft Learn: Build skills that open doors in your career. URL:
https://learn.microsoft.com/en-us/aspnet/core/blazor/security/?view=aspnetcore-9.0&tabs=visual-studio (access date:
07.05.2025).

© Pekh P., Yanchar O.

