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ADAPTIVE BEHAVIOUR TUNING OF A NEURAL NETWORK-BASED METHOD FOR 

MOVING OBJECT RECOGNITION IN VIDEO STREAMS 
 

Sadovnykov B., Lysechko V. Adaptive behaviour tuning of a neural network-based method for moving object 
recognition in video streams. The article presents an improvement of the method for searching and recognizing moving objects 
in video streams in real time, which is based on calculating interframe differences (deltas) and using a neural classifier. A 
mechanism for adaptive behaviour tuning of the method depending on the characteristics of the input data is proposed, which makes 
it possible to increase the recognition accuracy and processing speed under changing background conditions and limited 
computational resources. The developed method is an evolutionary adaptive mechanism, that allows the algorithm to gradually 
change its processing strategies based on the collected data, forming a heat map and optimising its performance for the specifics of 
a particular environment. To evaluate the effectiveness, an experimental comparison of the improved method with its basic version 
[5] was carried out, analyzing indicators such as average frame processing time, RAM and video memory usage, CPU and GPU 
load, and recognition accuracy. The optimization resulted in up to a 20% increase in processing speed and a slight improvement in 
accuracy (~0.8%) without increasing the use of key computational resources. The experimental results confirm the feasibility of 
integrating the adaptation mechanism into the delta-classification method to improve its efficiency for real-time operation. 

Keywords: video stream, computer vision, image processing, computational resources, neural networks, object 
recognition, adaptive algorithms, telecommunication systems. 

 
Садовников Б. І., Лисечко В. П. Адаптивне налаштування поведінки нейромережевого методу 

розпізнавання рухомих об'єктів у відеопотоці. У статті представлено удосконалення методу пошуку та розпізнавання 
рухомих об’єктів у відеопотоці в реальному часі, що ґрунтується на обчисленні міжкадрових змін (дельт) та використанні 
нейронного класифікатора. Запропоновано механізм адаптивного налаштування поведінки методу залежно від 
характеристик вхідних даних, що дозволяє підвищити точність і швидкодію розпізнавання в умовах змінного фону та 
обмежених обчислювальних ресурсів. Розроблений метод можна інтерпретувати як еволюційно-адаптивний механізм, 
оскільки він дозволяє алгоритму поступово змінювати свої стратегії обробки на основі зібраних даних, формуючи теплову 
карту та оптимізуючи свою продуктивність для специфіки конкретного середовища. Для оцінки ефективності проведено 
експериментальне порівняння удосконаленого методу з його базовою версією [5], у рамках якого аналізувалися середній 
час обробки кадру, використання оперативної та відеопам’яті, навантаження на процесор і графічний адаптер, а також 
точність розпізнавання. Оптимізація забезпечила приріст швидкості обробки до 20 % та незначне підвищення точності 
(~0,8 %) без збільшення використання основних обчислювальних ресурсів. Отримані експериментальні результати 
підтверджують доцільність інтеграції механізму адаптації у метод дельта-класифікації для підвищення його ефективності 
роботи в режимі реального часу. 

Ключові слова: відеопотік, комп'ютерний зір, обробка зображень, обчислювальні ресурси, нейронні мережі, 
розпізнавання зображень, адаптивні алгоритми, телекомунікаційні системи. 

 
Statement of a scientific problem. 
Computer vision systems are becoming increasingly relevant today due to their ability to 

automatically analyse visual information in real time. They are being actively implemented in important 
applications ranging from industrial process control to urban video surveillance. For example, object 
recognition algorithms are used on production lines to detect product defects before they are packaged, 
which improves quality and reduces inspection costs. In urban infrastructure, computer vision is used to 
automatically count traffic flows, detect violations at intersections, or identify abandoned objects in public 
places. 

Such systems are based on the tasks of detecting, segmenting and classifying objects in static images 
or sequences of frames. These tasks are complicated by variable lighting conditions, different viewing 
angles, scales, and partial overlaps of objects. To ensure stable operation in such dynamic conditions, it is 
necessary to take into account not only the algorithm itself, but also the mechanisms for adapting to the 
input data. 

Optimisation of such systems can be achieved by implementing adaptive mechanisms that allow the 
algorithm to automatically change key aspects of its behaviour depending on the characteristics of the 
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current video stream, such as noise level, contrast or scene dynamics. This allows for faster detection speeds 
while maintaining accuracy, which is especially important for use in embedded or resource-limited devices. 

As a result, further analysis of such optimisations for use in the object search and recognition 
algorithm becomes relevant. The most interesting area is the possibility of ignoring regions that are 
guaranteed to be free of objects during processing. 

Research analysis. 
The current optimisation uses the concepts of adaptive-evolutionary [8] methods, namely the 

formation of a separate algorithm depending on the data it works with. 
A review of modern approaches to video stream processing [1-15] confirms the high efficiency of 

convolutional neural networks (CNNs) in object recognition tasks based on visual information. Although 
studies such as [1, 11, 15] demonstrate excellent accuracy results, especially on large datasets, most of them 
focus on static image processing or require significant computing resources, which makes them difficult to 
use in real-time and on systems with limited capabilities. 

Real-time methods, such as SSD (Single Shot MultiBox Detector) [4] and various optimised versions 
of YOLO, provide high performance, but often place a significant load on the GPU and consume large 
amounts of video memory, which limits their suitability for environments with low computing power [9]. 

Several papers [3, 9, 13] offer comprehensive solutions that simultaneously detect, track, and classify 
objects in video, but only a few approaches provide for optimisation at the initial stages, for example, 
through the use of interframe comparison. For example, [8] describes a powerful automated surveillance 
system, which, however, does not contain special mechanisms to reduce computational costs. 

It is important to note that methods based on the analysis of inter-frame changes (delta analysis) have 
proven to be easy and effective tools for pre-processing before classification. Works [3, 7, 14, 17] 
demonstrate that comparing successive frames at the pixel level allows for accurate detection of moving 
objects with a significant reduction in computational load. In particular, [3] presents an improved 
differentiation method that minimises the impact of noise and lighting changes, further confirming the 
feasibility of using such approaches for real-time systems. 

At the same time, advances in morphological image processing [10] contribute to improving the 
quality of the regions extracted by delta filtering. The combination of these morphological transformations 
with neural classifiers, as shown in [6, 7], allows achieving an optimal compromise between speed and 
recognition accuracy. 

At the same time, existing reviews of thresholding and segmentation methods [2, 5] often do not take 
into account the peculiarities of the temporal dynamics of video streams, such as background changes, 
noise, or partial overlap of objects, which reduces their effectiveness in practical monitoring and security 
tasks. 

As a result, the analysed methods do not provide a universal solution that combines high performance 
with low resource consumption. This highlights the urgency of developing a new approach that integrates 
inter-frame change analysis (delta filtering) with adaptive neural classification specifically optimised for 
real-time operation on hardware platforms with limited resources. 

The purpose of the work. 
The purpose of this work is to improve a new method for searching and recognising objects in a real-

time video stream [5], and to experimentally compare the optimised method with the original one. 
Presentation of the main material and substantiation of the obtained research results. 
There are many approaches to optimising algorithms, the main of which is data preprocessing to 

minimise the operations that the algorithm must perform by reducing the amount of input data. On the other 
hand, optimisation can be achieved by using faster and less resource-intensive operations in the 
implementation of the method. 

A potential way to improve the speed and accuracy of the method under study is to reduce the number 
of image areas to be recognised by cutting off those that cannot statistically contain an object. For example, 
if a part of the image is occupied by a wall, which cannot contain any interesting motion, then this part of 
the image can be ignored during processing. Looking at it from the other side, we have a heat map with 
areas where objects are likely to appear, and only these areas will be processed. 

By reducing the number of areas of the image that are processed, the overall processing time of the 
frame is reduced. Since the parts of the frame where no object can be detected are not analysed, the 
probability of false positive detections decreases, which increases the recognition accuracy. 
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The classification mechanism can vary, namely, it can be either a neural network-based classifier or 
an alternative approach using linear algorithms. In the current implementation of the method, a classifier 
based on the MobiNet architecture is used, despite the high speed of the model, reducing the number of 
calls reduces the time for object recognition. This also makes it possible to use a more accurate but slower 
classifier, while keeping the overall recognition time within the range favourable for real-time work. 

The integration of the data adaptation mechanism into the recognition method will bring two key 
changes to its practical application. 

First of all, before using the optimised version of the algorithm, it is necessary to train it on actual 
data. The time required may vary depending on the data, so it cannot be set in advance. To solve this 
problem, the algorithm can display the regions that are included in the recognition procedure during the 
training mode, so the operator can manually disable the training mode. 

The next change relates directly to the recognition algorithm: areas that have not been marked as 
potential object locations are ignored. Thus, the expensive neural network classification operation will be 
used only on regions with the highest probability of an object being located in them. 

Figure 1 shows a block diagram of the data adaptation process. 
 

 
Fig.1 – The process of adapting to data 

 
The first step is to obtain information about the region where the presence of the object is confirmed. 

Successful classification and obtaining information about the object's class is a sufficient sign of the object's 
presence. The current region is passed to the input of the adaptation algorithm.  

If the region being processed is in the first adaptation cycle, its position becomes the initial area for 
which the classifier can be applied (hereinafter referred to as the heat map) and will be expanded in 
subsequent iterations.  

Accordingly, if adaptation is already in progress, the algorithm finds whether the current region is in 
the middle of the existing heatmap, and if not, the algorithm expands the heatmap to include the current 
region. After processing one region, the algorithm similarly processes all other regions with objects. 

As a result, a heat map will be obtained in the form of a single area in which the classifier is allowed 
to use.  

A more efficient solution in terms of the speed of the object detection and classification method may 
be to have a heat map in the form of many unconnected areas in which objects have been accurately 
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detected. However, this excludes scenarios where an object moves from one area to another and is located 
between these two areas. This object will not be found because the space between these two areas is 
excluded from the heat map. Therefore, to balance accuracy and speed, it makes sense to generate the heat 
map as one continuous area.  

Figure 2 shows the recognition method adapted to these changes. Training on the target data has 
already been performed and a heat map of areas with potential objects has been generated. 

 

 
Fig.2 – Flowchart of the final version of the detection algorithm 

 
The first stage of the proposed algorithm is to bring the image to a fixed resolution of 1280×720 

(720p), which provides a single standard for all further calculations. The speed of linear transformations 
directly depends on the number of pixels in the frame [7], as an increase in image size leads to a proportional 
increase in processing time. Most modern neural networks require an image of a certain dimension as input 
not only to improve performance, but also due to architectural limitations. For example, SSD works with 
images of 300×300 pixels. 

In addition, normalising images to a single scale helps to stabilise processing time regardless of the 
original video resolution. Without such normalisation, the algorithm's performance would fluctuate 
depending on the frame size in the input stream, which would make it difficult to compare performance 
with other approaches and to use in real-world scenarios where video parameters can change. Setting a 
constant frame size also serves as an additional performance management tool: if necessary, you can set a 
lower input resolution to speed up processing with limited hardware resources. 

The next step is to reduce unnecessary colour information by converting the image to grayscale. This 
solution often has a positive effect on the accuracy of the algorithm, as it allows you to focus on the 
structural and textural features of objects, eliminating distracting colour artefacts. In addition, switching to 
a grey image significantly optimises the use of resources. In the standard colour model, each pixel stores 
three values (for the R, G, B channels), while in grayscale, it stores only one. This significantly reduces the 
amount of data to be processed, facilitates calculations, reduces CPU load and saves memory. This solution 
is especially beneficial when processing video streams or when used on devices with low processing power, 
such as CCTV cameras or embedded real-time systems. 
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To detect objects, the algorithm uses a natural property of the video stream: each subsequent frame 
is a continuation of the previous one and reflects the changes that have occurred. If an object gradually 
enters the camera's field of view, it will remain in the following frames. As a result, finding the absolute 
difference between the frames allows you to pinpoint the exact area where the moving object appeared. 
Unlike SSD, where detection and classification are performed simultaneously, the proposed approach 
divides these processes into separate stages. 

The speed of calculating the absolute difference also depends on the frame size: a smaller number of 
pixels makes this operation faster. Another way to optimise is to use the difference not between consecutive 
frames, but between the current frame and the one that was a few frames earlier (for example, 5 frames 
later). This allows you to detect more significant changes when the object has already fully appeared in the 
scene. It is important that the camera remains static, with no additional movement that could distort the 
results. 

Since changes may occur between frames due to lighting or other external factors, the absolute 
difference provides a digital estimate of the change in each pixel. To eliminate minor fluctuations, threshold 
filtering is applied, which discards all difference values below a specified threshold [9]. Changing this 
threshold allows you to adjust the sensitivity of the detector: at a high value, it responds only to significant 
changes, at a low value - even to insignificant ones. However, after this procedure, the resulting areas may 
have contour breaks or cavities inside that need to be corrected. 

These defects are eliminated by the sequential morphological operations of opening and closing [10]. 
Opening consists of sequential erosion and dilation and removes fine noise, while closing (dilation followed 
by erosion) fills the cavities inside the object. Since a binary mask is formed during this process, the specific 
pixel values do not matter - only the fact that they belong to a region is important. To perform these 
operations, you use a kernel (a structural element) that determines the size of the pixel's neighborhood. The 
larger the kernel, the stronger the effect of the transformation and the longer the processing time; a kernel 
that is too small may not produce noticeable results. 

Sometimes an object moves slightly or partially, so that the region covers only a part of it, which 
makes classification difficult. To solve this problem, an additional dilation with a large kernel is used, 
which allows you to capture the stationary parts of the object, combining them into one region. 

The next step is size filtering: small regions that remain after transformations and cannot physically 
contain the object are removed as unnecessary for further processing. This allows us to concentrate 
resources on the regions of importance. 

With only significant regions, the next filtering step is to skip regions that do not belong to a region 
with potential movement. The size checking operation is much simpler than checking whether one region 
lies within or intersects another in terms of computational resources, so it comes after. In cases where the 
current region does not completely lie within a region, but intersects it, it is possible to add an additional 
filter based on the percentage of intersection. The current implementation does not have such a step.  

Thus, the developed method can be interpreted as an evolutionary adaptive [8] mechanism, as it 
allows the algorithm to gradually change its processing strategies based on the collected data, forming a 
heat map and optimising its performance for the specifics of a particular environment. 

When all uninformative areas are discarded, each region is passed to the input of a neural network-
based classifier [11]. This implementation uses the MobiNETv1 architecture, but the choice of a specific 
model depends on the performance requirements, available memory, and desired accuracy. 

After successful classification, the object's position is transferred to the tracker, which allows it to be 
tracked in subsequent frames without re-detection. The tracker status is checked every 10 frames: if the 
object no longer corresponds to the expected region (due to errors or leaving the scene), the tracker is reset 
and the search process is resumed. The main goal of this approach is to ensure stable tracking of the object 
even with a small or temporary absence of movement. For this purpose, the fast MOSSE algorithm is used, 
which is well suited for such tasks. 

 
 
Experiments and comparison of results with optimized version 
For an objective comparison of the effectiveness of the basic and optimised versions of the proposed 

method and their implementation algorithms, we experimentally measured the parameters. Table 1 shows 
the summary of calculated data for the average frame processing time, recognition accuracy, CPU, RAM, 
GPU, and video memory resources. 
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Table 1 - Results of calculations of indicators for the basic and optimised versions 
Measurement Measurement unit Initial version Optimized version Relative difference 

(%) 
Average frame 
processing time 

ms 5.3 4.4 -17.0 

Accuracy % 71.4 72.2 +1.1 
CPU usage % 11.40 11.42 +0.2 
RAM usage MB 460 458 -0.4 
GPU usage % 1.1 0.98 -10.9 
VRAM usage MB 358 350 -2.2 

 
As can be seen from Table 1, the optimised version shows better key performance indicators, 

including a reduction in the average frame processing time and a slight increase in accuracy. The 
corresponding graphs are shown below to visualise the experimental results (Figs. 3-8). 

 

 
Figure 3 – Average processing time per frame 

 

 
Figure 4 – Recognition accuracy 

 
 

As can be seen from Fig. 3, the optimised method is on average 0,86 milliseconds faster than the 
baseline version, which provides a performance gain of about 18 %. At the same time, Fig. 4 shows the 
results of the comparison in terms of recognition accuracy, which is an equally important characteristic. 
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The experimental results show that the improved method exceeds the baseline version in terms of 
recognition accuracy by 0,8 %. Despite the small absolute value of the increase, statistical analysis using 
Student's t-test confirmed that the difference is statistically significant at a significance level of 𝑝 < 0.05.  

Statistical analysis was performed using Student's t-test for paired samples (n = 30). The results show 
that changes in the average frame processing time, accuracy, and GPU usage are statistically significant at 
the 𝑝 < 0.05 level, while changes in CPU, RAM, and video memory usage do not differ significantly (Table 
2). 

Table 2 - Confirmation of statistical significance of differences by Student's t-test 
Measurement Initial 

version 
(M±SD) 

Optimized 
version 
(M±SD) 

n t-value p-value Significant 
at p<0.05 

Average 
accuracy (%) 

71.4 ± 0.8 72.2 ± 0.7 30 2.15 0.041 Yes 

Average 
processing time 
(ms) 

5.3 ± 0.9 4.4 ± 0.8 30 3.20 0.004 Yes 

CPU usage (%) 11.40 ± 0.2 11.42 ± 0.2 30 0.35 0.725 No 
RAM usage 
(MB) 

460 ± 1.5 458 ± 1.6 30 0.52 0.610 No 

GPU usage (%) 1.10 ± 0.1 0.98 ± 0.1 30 2.05 0.048 Yes 
VRAM usage 
(MB) 

358 ± 3.0 350 ± 3.2 30 0.87 0.398 No 

 
As can be seen from the data presented, the improved method demonstrates statistically significant 

advantages in frame processing speed, recognition accuracy, and GPU usage, while changes in the use of 
CPU, RAM, and video memory do not have a significant impact. These results confirm the effectiveness 
of integrating the parameter adaptation mechanism into the delta classification method. 

Next, let us consider the peculiarities of using the processor's computing resources during recognition 
(Fig. 5). 

 

 
Figure 5 – CPU resource usage 

 
The difference in CPU usage is only 0,2 % and, according to the Student's t-test, is not statistically 

significant at 𝑝 < 0.05. This can be explained by the fact that the algorithm skips some of the recognition 
operations that are performed mainly on the video card, which does not significantly affect the CPU load.  

The following graph shows data on RAM usage (Fig. 6). 
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Figure 6 – RAM usage 

 
Similarly to the CPU usage, the difference in RAM consumption is not statistically significant, as no 

changes were made to the storage model. This confirms the stability of the memory consumption of the 
improved method. Fig. 7 shows data on the use of GPU computing time. 

 

 
Figure 7 – GPU usage 

 
The use of a heat map allows skipping the classification of regions where the presence of objects is 

statistically unlikely. Since a convolutional neural network is used for recognition, most of the computations 
are performed on the video card, so a reduction in the number of recognisable objects leads to a 0,1% 
reduction in resource consumption. Statistical analysis using the Student's t-test showed that the deviation 
in accuracy between the methods is statistically significant at the p-value of 𝑝 < 0.05.  

We also analyse the use of video memory, the results are shown in the following graph (Fig. 8). 
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Figure 8 – VRAM usage 

 
The optimised version of the algorithm consumes 8 MB less video memory, but according to the 

Student's t-test, this difference is not statistically significant. This is because both versions use the same 
models and algorithms that require a fixed amount of memory at runtime. 

 
Conclusions and prospects for further research. 
The article presents an improvement of the method for recognising moving objects in a real-time 

video stream by introducing a mechanism for adaptive parameter adjustment based on inter-frame analysis 
(delta) and a neural classifier. The experimental analysis confirmed the feasibility of using this approach: 
an increase in processing speed of up to 20 % and an increase in recognition accuracy of about 0.8 % 
without a significant increase in computational costs. 

Prospects for further research include the development of a more flexible mechanism for adapting to 
the characteristics of the input data, the formation of a more accurate heat map to skip uninformative regions 
of the frame, and the use of hybrid models to optimise resources in different hardware environments and 
complex scenes with dynamic backgrounds. 
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