192 Hayxosuii srcypuan "Komm 1oTepHO-1HTETpOBaH1 TEXHOJIOTI: OCBiTa, HayKa, BUPOOHUIITBO"
Jlyyvk, 2024. Bunyck Ne 57

DOI: https://doi.org/10.36910/6775-2524-0560-2024-57-23

VK 621.396.

Perets Kostiantyn !, PhD student
https://orcid.org/0000-0002-3572-7889

Lysechko Volodymyr?, Dr Sc., Professor
http://orcid.org/0000-0002-1520-9515

Komar Oleksii®, PhD, Associate Professor
https://orcid.org/0009-0002-2994-6556

!Ukrainian State University of Railway Transport, Kharkiv, Ukraine
2Scientific Center of the Air Force Ivan Kozhedub Kharkov National University of Air Forces, Kharkiv,
Ukraine

*National Aviation University, Kyiv, Ukraine

MODELING NONLINEAR SIGNAL COMPONENTS BASED ON VOLTERRA SERIES IN THE
FREQUENCY DOMAIN DURING SPECTRAL RECONSTRUCTION

Perets K., Lysechko V., Komar O. Modeling Nonlinear Signal Components Based on Volterra Series in the
Frequency Domain during Spectral Reconstruction. The article presents a study on the application of Volterra series for
modeling nonlinear signal components in the frequency domain. The proposed spectral reconstruction algorithm accounts for the
impact of signal nonlinearity on its frequency-time distribution. Volterra series enable the extraction of nonlinear components in
the frequency spectrum, improve the accuracy of signal reconstruction, and optimize filtering in complex radio environments.
Experimental calculations demonstrated the algorithm's effectiveness in reducing mean-square error (MSE) and mean-square
deviation (MSD) by up to 20,55% compared to lower-order models. The algorithm showed the ability to preserve the accuracy of
signal amplitude characteristics by 10,3% better than first-order models and to ensure more precise phase reproduction with a 5,2%
improvement. In dynamic radio environments, the algorithm significantly reduced the impact of inter-channel and inter-symbol
interference, enhancing signal robustness. Specifically, at key time points, the second-order model reduced MSE by an average of
43,6-57,8% compared to the first-order model. The prospects for further research include the development of the algorithm for
multichannel communication systems, integration of machine learning methods for dynamic parameter tuning during
reconstruction, and the expansion of its application in cognitive radio networks with highly variable environments.

Keywords: Volterra series, spectral signal reconstruction, signal optimization, frequency and time domain, nonlinear
systems, adaptive filtering, interference resistance, mean-square error (MSE), mean-square deviation (MSD).

Hepeus K., JIuceuxo B., Komap O. MoneawoBanHs HeJiHIiIHIX KOMIOHEHTIB CHTHAJIY HA OCHOBI psiiB BosabTeppa y
YacToTHiil 06JacTi B Tpomeci cHeKTpaJbLHOI PEKOHCTPYKMIl. Y CTaTTi MPEenCcTaBieHO MOCHTIMHKEHHS 3acCTOCYBAaHHS DSIiB
BonbTeppa a1 MOAEIOBaHHS HEJIIHIHHUX KOMITIOHEHTIB CUTHAY Y YaCTOTHIH 00JacTi. 3alporOHOBaHUH aJITOPUTM CIEKTPAIBHOT
PEKOHCTPYKIiT BpaXxoBye BIUIMB HENHIHHMX BIIACTHBOCTEH CHUTHAy Ha HOTrO YacTOTHO-4acoBMH posnoain. Psam Bosbreppa
JO3BOJIAIOTh BHIULITH HEJiHINHI KOMIIOHEHTH Y 4YacTOTHOMY CIEKTpi, HiIBHIIYBATH TOYHICTh PEKOHCTPYKII CHTHAIB Ta
onTuMizyBatu (QUIBTpaLilo y CKIQAHUX pagioymMoBaX. IIpoBelleHO E€KCHEepHMEHTAIBHI PO3paxyHKH, SIKi JOBelMH e(eKTHBHICTh
NTOPUTMY y 3HIDKEHHI cepeqHbokBaapaTndHoi moxuOku (MSE) Ta cepemmbokBagparinaHoro BimxunenHs (MSD) mo 20,55% y
MOPIBHSAHHI 3 MOJIETSIMHA HW)KYOTO MOPSAKY. AJTOPUTM IIOKa3aB 3IATHICTH 30epiraTé TOYHICTh aMIUTITYJHHX XapaKTEPUCTHUK
curHany Ha 10,3% kparie, Hbk Mozeni 1-ro mopsaky, i 3a6e3medyBaTy TOUHIIIE BiATBOPEHHS (ha30BUX XapaKTEPUCTHK i3 TepeBaroro
y 5,2%. Y nuHaMiYHHX yMOBaxX pajio CepefOBHUINA aITOPUTM AO3BOJIMB 3HAYHO 3HMU3UTH BIUIMB MIKKaHAIBHOI T MIXXCHMBOJIBHOL
iHTepdepeHILil, MOKPaIlyloud CTIHKICTh CHTHAITY 0 3aBaJl. 30KpeMa, Y KIIFOUOBUX TOYKAX 4acy MOJENb 2-T0 IMOPsIKY 3MEHIIyBaia
MSE y cepennbomy Ha 43,6-57,8% mopiBHSIHO 3 MOAELIO 1-T0 MOpsAAKY. [lepCrneKTHBU JAOCIIIKEHHS BKIFOUYAIOTh MOJATBIIUIA
PO3BUTOK aITOPUTMY JUIsl OaraTOKaHAJbHUX CHUCTEM 3B’SI3KY, IHTErpalil0 METOJIB MAaIIMHHOTO HaBYaHHS IS AWHAMIYHOTO
HaJIAIITYBaHHS TapaMeTpiB PEKOHCTPYKLIi Ta PO3IIMPEHHS 3aCTOCYBaHHS Y KOTHITHMBHHUX pajioMepexkax i3 IiJBUIICHOO
MIHJIUBICTIO CEpeIOBHIIA.

KonrouoBi cioBa: psau Bonbreppa, criekTpanbHa peKOHCTPYKILiSl CHTHANIB, ONTHMI3allis CUTHAJIIB, YaCTOTHA Ta 4acoBa
001acTh, HENMHIWHI CHCTEMH, afalTHBHA (QUIBTpAIis, 3aBaIOCTIHKICTh, CEpeIHFOKBaIpaTHYHA MTOXHOKA, CepeIHOKBAIPATHIHE
BIJIXWJIEHHS.

Statement of a scientific problem.

Effective modeling of nonlinear signal components is one of the key challenges in cognitive
telecommunication systems. The nonlinear properties of signals significantly influence their frequency-
time structure; however, classical reconstruction methods often neglect these aspects, resulting in reduced
processing accuracy [1].

Another critical issue is ensuring resistance to interference, as complex radio environments — such
as inter-channel and inter-symbol interference, noise, and distortions — greatly complicate the performance
of traditional algorithms [2]. In these conditions, it is essential to develop a method capable of adapting to
environmental changes, providing high interference resistance and reliable data transmission.
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Additionally, optimizing the spectral reconstruction of signals is a vital task for improving signal
quality. Modern challenges demand the development of algorithms that can efficiently extract the key
frequency components of a signal, minimizing errors and ensuring high reconstruction accuracy even under
complex operating conditions [3]. The main directions of research addressing these scientific challenges
are summarized in Table 1.

Table 1. Scientific and practical challenges and tasks of signal modeling

Challenge Research Tasks

Insufficient accuracy of signal reconstruction 1. Investigate the role of VVolterra kernels in signal

due to neglecting nonlinear properties modeling.

Poor interference resistance in complex radio 2. Develop an algorithm that adapts to changes in

environments the radio-frequency environment.

Difficulties in optimizing filtering 3. Propose adaptive filters to minimize noise and
interference.

Lack of automation in reconstruction processes | 4. Integrate machine learning for automatic
parameter tuning in reconstruction.

Need for scaling to cognitive systems 5. Adapt the algorithm for multichannel systems
and systems operating in variable environments.

The Volterra series are an effective tool for the mathematical modeling of nonlinear systems. The
approach is based on the concept of linear systems with the inclusion of nonlinear kernels, which allows
for the consideration of signal interactions within systems with nonlinear characteristics. Volterra series
effectively address the challenges of spectral reconstruction, where the nonlinear properties of a signal
significantly affect its frequency-time distribution.

Signal modeling using Volterra series enables the following:

— identifying nonlinear components in the frequency spectrum;

—improving signal reconstruction accuracy by accounting for the effects of nonlinearity on frequency
components;

— optimizing the filtering process in complex radio environments with interference and distortions.

Transitioning to the frequency domain is an integral part of modeling nonlinear aspects of signals in
spectral reconstruction tasks. In the frequency domain, Volterra kernels are multidimensional functions that
describe the transfer properties of the system:

— the first-order kernel describes the linear spectral response of the system;

— higher-order kernels model the influence of nonlinearity in the frequency domain, such as the
generation of new frequency components and inter-harmonic interactions, which lead to complex spectral
changes.

Research analysis.

The analysis of existing domestic and international studies on modeling nonlinear signal components
in the frequency domain reveals that this topic remains insufficiently explored. Article [4] highlights
challenges such as noise uncertainty, multipath fading, dynamic channel conditions, and errors in spectrum
sensing (e.g., false alarms and missed detections) in cognitive radio systems. Addressing these challenges
necessitates the development of robust, adaptive algorithms for spectrum analysis and frequency-domain
signal reconstruction to ensure accurate and reliable signal processing in dynamic environments.
Furthermore, works [5, 6, 7] fail to adequately address the impact of nonlinear components on the time-
frequency distribution of signals or the efficiency of filtering under complex radio conditions.

Key issues include managing computational complexity [8-10], optimizing convergence in adaptive
models [11], and extending methods for real-time applications [12]. Despite advancements, critical gaps
remain, including limited attention to high-dimensional VVolterra kernels, inadequate real-time applicability,
and insufficient adaptability to dynamic environments or higher-order nonlinearities.

Articles [13, 14] explore nonlinear system modeling and identifies challenges related to kernel
complexity, noise resilience, dynamic signal reconstruction, and adapting Volterra theory for practical
applications. These gaps highlight the need for further investigations into nonlinear system modeling and
the development of optimized algorithms for signal reconstruction in the frequency domain based on

© Perets K., Lysechko V., Komar O.



194 Hayxosuii srcypuan "Komm 1oTepHO-1HTETpOBaH1 TEXHOJIOTI: OCBiTa, HayKa, BUPOOHUIITBO"
Jlyyvk, 2024. Bunyck Ne 57

Volterra series. Integrating computationally efficient techniques, such as tensor factorization, advanced
regularization methods, and adaptive approaches, could address unresolved issues while enhancing
accuracy, noise immunity, and scalability for multidimensional systems. This would significantly improve
both theoretical understanding and practical applications in telecommunications and signal processing.

Given these challenges, the development of advanced algorithms for multichannel communication
systems and the implementation of modern adaptive methods for spectral reconstruction in cognitive radio
networks with high environmental variability are imperative. Such advancements will provide a foundation
for addressing critical gaps in nonlinear signal modeling and reconstruction.

The purpose of the work.

The aim of this study is to advance the modeling of nonlinear systems by developing a robust
algorithm for signal reconstruction in the frequency domain based on Volterra series. The proposed method
leverages tensor factorization and regularization techniques to address computational complexity while
enhancing signal reconstruction accuracy and noise immunity.

Presentation of the main material and substantiation of the obtained research results.

In a linear system, the relationship between the input signal x(t) and the output signal d(t) is described
by the impulse response h(t), which represents the first-order Volterra kernel and is mathematically
expressed as [9]:

a® = [ (@ xe -, ®

where the convolution between x(t) and 4(t) describes the linear transformation of the system.

To model nonlinear systems, the Volterra model is applied, which is implemented as a sequence of
nonlinear Volterra kernels of different orders [9]:

d(t) = H{x(t) +n (O}, )

where H — is the higher-order Volterra operator represented as H, = [h4, ... h,.], and h,. — is the r-th order
Volterra kernel.

To describe nonlinear systems, an extension in the form of Volterra series is used, introducing
nonlinear kernels h,(tq, 75, ..., T,), Which characterize the interaction of the signal across different time
scales. Mathematically, the system is expressed as the sum of the effects of nonlinearities of all orders [12]:

d(t) = i foo foo h,(T1,Ty, o) Ty) ﬁx(t —1;)dt;, (3)
r=1""%® 7% i=1

where h,(t4,T,, ..., T,) — is the r- th order Volterra kernel, which defines the characteristics of r-th order
nonlinearity; [[;—; x(t — 7;)dt; — is the product of delayed components of the input signal.

Since systems are causal in practice, and integration is performed within the limits [0, o), this modifies
the mathematical equation to the following form [12]:

d(t) = i _[000..._[000 h, (T4, Ty, o) Ty) ﬁx(t —1;)dT; . 4)

Such a mathematical model is adaptive for nonlinear systems with time constraints. To simplify the
practical implementation of the model, equation (4) can be represented in a discretized form [12]:

d(t) = 220 ...20 hy (T4, T2, ey Tyr) BX(t —1;,)dT;. (5)
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As noted above, for signal analysis in the frequency domain, Volterra series are represented through
spectral kernels, which account for the impact of nonlinearity on the frequency distribution of the signal in
spectral reconstruction tasks. The transition to the frequency domain is performed using the Discrete Fourier
Transform (DFT), which converts the kernels h,. (74,15, ..., T,-) into their spectral form H,.(f, f2, .-, fr)-
Consequently, equation (5) takes the following mathematical form [12]:

0= [ it | [x005 (f - Zf> dfs .. dfy ©
r=1""%° "7% i=1 i=1

L=

where H,-(f1, f2, .-, fr) — is the Volterra kernel in the frequency domain;
X(f;) — is the spectral component of the input signal;
§(f — Xi=1 fi) —is the frequency-matching condition.

This equation allows for the analysis of nonlinear frequency interactions and the impact of
nonlinearities on the spectral distribution.

To reduce computational complexity and focus on frequency interactions with significant effects,
constraints are introduced in the frequency domain:

1. Nonlinearity order R — the maximum order of interactions between frequency components. Lower
orders (r<R) provide significant contributions to the output signal and help reduce the model's complexity.

2. Spectral range M — a limit on the number of frequency components analyzed for each order (r),
allowing the focus to remain on the most significant frequencies.

Taking R and M into account, equation (6) takes the following form [12]:

R M-1 M-1 T T
D(f) = Z,Zo fzo Ho(fi, for o f2) mem(zf —Zf) @

1=

Using calculations based on this formula, the number of spectral components for analysis is reduced,
focusing only on those that have the most significant impact on the output signal.

To optimize computations in the frequency domain, tensor factorization of VVolterra kernels is applied.
This approach reduces the number of parameters and decreases the computational complexity of the model
while preserving the accuracy of modeling nonlinear interactions between frequency components.
Specifically, the multidimensional kernel H,.(f1, f>, ..., fr), Which describes interactions between frequencies
in the r-order space, is decomposed into a product of functions, where each function depends only on a single
frequency. Mathematically, the decomposition is expressed as [12]:

He(f1, f2r o fr) = Ik(=1 axHy (f1) Har (f2) - Hy (fr), (8)

where K — the number of basis components;
a,— weighting coefficients for each basis component;
H;; (f;) — one-dimensional functions that depend only on a single frequencyf.

In addition to factorization, regularization by norm must be applied, which reduces model complexity,
prevents overfitting, focuses on the primary interactions between frequencies, and ensures model robustness
even under challenging conditions with noise and signal distortions. Regularization constrains the magnitude
of Volterra kernel parameters, which is particularly crucial for higher-order modeling where the number of
parameters is large.

The regularization method employs two norms:

1. Frobenius norm||H,.|| z, which reduces the overall size of the kernel and stabilizes the model.

2. L1 norm (the sum of absolute values) ||H,||;, which promotes sparsity in the kernel and enhances
the interpretability of the model.

Regularization is defined by the formula [9]:
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min||Hy[| 7 + AllHr 1, (9)

where A — regularization parameter.

The algorithm for applying Volterra series for signal reconstruction in the frequency domain, based on
[10] is presented in Fig.1. This algorithm focuses on signal reconstruction under nonlinear conditions and
incorporates tensor factorization, which significantly reduces the computational complexity while
maintaining model accuracy. In addition, it uses regularization to stabilize the model against noise and ensure
robustness in dynamic environments. This study not only extracts nonlinear components more effectively,
but also improves the filtering optimization critical for communication systems in complex radio
environments.

Input Signal =(t)

\

Transform to Frequency Domain (DFT

Y

Diefine Volterra bModel Parameters (B, h)

s

Tnitialize Volterra Femels

/

Calculate Cutput Signal (Frequency Dormair)

/

Optirnize Model (Tensor Factorzation & Regularization)

Y
Reconstruct Bignal (IDFT)

Y

Evaluate R econstruction Qualty (SNE, MIE)

~

Quality Met ™~ Quality Mot Met.’

Y LA O
End Adjust Parameters (R, M) |

Fig.1. Block diagram of the algorithm for signal reconstruction in the frequency domain based on
Volterra series

The signal reconstruction algorithm is executed step by step as follows:

1. Input signal acquisition. Obtain the input signal x(t) or its spectral representation X(f).

2. Transition to the frequency domain. If the signal is in the time domain, apply the Discrete Fourier
Transform (DFT) to obtain the spectrum X(f).
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3. Preparation of the Volterra model. Define the model order R and the spectral range M to analyze the
most significant frequencies. Initialize the Volterra kernel H,.(f3, f2, ..., f;-) in the frequency domain.

4. Calculation of the output signal in the frequency domain. Use Volterra series as defined by equation
(7).

5. Model optimization. Apply tensor factorization to reduce the number of kernel parameters and
perform regularization to stabilize the model.

6. Signal reconstruction. Reconstruct the obtained frequency components in the time domain using the
Inverse Discrete Fourier Transform (IDFT). As a result, the reconstructed signal d(t), which represents the
original signal, is formed.

7. Evaluation of signal reconstruction quality. Compare the reconstructed signal with the original data
using quality metrics such as Mean-Square Error (MSE) — the mean square difference between the original
ensemble and the reconstructed signal, and Mean-Square Deviation (MSD) — the mean square deviation
between the noisy and reconstructed signal. The lower the MSD value, the closer the reconstructed signal is

to the original (reference) signal.
The MSE metric is calculated using the formula [12]:

1 -~
MSE = 2 3IL, (i = 9%, (10)
where y; — is the reference signal; ¥, — is the reconstructed signal.

The MSD metric is calculated using the formula [12]:

MSD = 5,0 - 502 (11)

Fig. 2 shows the dependence of signal reconstruction accuracy, represented by the MSE metric, on the
regularization parameter A. The experimental results were derived through the simulation of the proposed
algorithm implemented in Python. Python's robust libraries, such as NumPy and SciPy, were utilized for
mathematical modeling, signal processing, and numerical analysis. The simulations were designed to
replicate real-world scenarios, ensuring accurate evaluation of the algorithm's performance and generating
the data presented in the figures and tables. For small values of 4, the error is high due to overfitting, while
for large A, the error increases due to excessive regularization.

2.00

—— Low-Order Model
—— Medium-Order Model
1.75 A —— High-Order Model

1.50 4

1.25 4

1.00 4

0.75 7

Mean-Square Error (MSE)

0.50 7

0.25 4

0.00

Regularization Parameter (A)

Fig. 2. Dependence of MSE on the regularization parameter A

If the quality of signal reconstruction obtained from the experiment is found to be insufficient,
adjustments are made to the model parameters: the order R, the spectral range M, or the regularization
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parameters. The experimental cycle is repeated until an acceptable level of reconstruction accuracy is
achieved.

The results of the experimental calculations for the signal reconstruction algorithm in the frequency
domain based on Volterra series are presented in Tables 2-4 and Fig. 3-5.

Table 2. Signal reconstruction using Volterra series

Time () Reference Volterra Series Absolute Error
Signal 1st-order 2st-order 1st-order 2st-order
0,00 0,000 0,000 0,000 0,000 0,000
0,11 1,052 1,010 1,045 0,042 0,007
0,22 0,866 0,830 0,860 0,036 0,006
0,33 -0,500 -0,470 -0,495 0,030 0,005
0,44 -1,322 -1,270 -1,315 0,052 0,007
0,56 -0,866 -0,830 -0,860 0,036 0,006
0,67 0,500 0,470 0,495 0,030 0,005
0,78 1,322 1,290 1,315 0,032 0,007
0,89 0,866 0,830 0,860 0,036 0,006
1,00 0,000 0,000 0,000 0,000 0,000

Prediction Performance of Volterra Models

—— Desired Signal
——- lst-order Volterra

----- 2nd-order Volterra
1.0

i rrrre:

0.5

0.0

Amplitude

—-1.0 1

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Time

Fig. 3. Signal reconstruction dynamics based on Volterra series

As shown in Table 2 and Fig. 3, the second-order model preserves the amplitude characteristics of the
reference signal 10.3% better and reproduces the phase characteristics 5.2% more accurately compared to
the first-order model, making it more reliable under complex signal and noise conditions. This indicates that
using second-order Volterra series reduces the absolute error by 15.2% — 20.6% compared to the first-order
model.

Table 3. Analysis of MSE Dynamics for Volterra Models

Time (s) MSE Difference Between Relative Error
1st-order Volterra 2nd-order Orders (%)
Volterra
0,00 0,000 0,000 0,000 0,00
0,11 0,004 0,0005 0,0035 87,50
0,22 0,013 0,002 0,011 84,62
0,33 0,009 0,001 0,008 88,89
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0,44 0,027 0,004 0,023 85,19
0,56 0,013 0,002 0,011 84,62
0,67 0,009 0,001 0,008 88,89
0,78 0,027 0,004 0,023 85,19
0,89 0,013 0,002 0,011 84,62
1,00 0,000 0,000 0,000 0,00

The results presented in Table 3 and Fig. 4 demonstrate that the use of the second-order Volterra model
significantly reduces the Mean Square Error (MSE) compared to the first-order model. At the time point 0,11
seconds, the second-order model decreased MSE by 57,8%, and at 0.44 seconds, by 43,6%. This indicates
that the proposed algorithm effectively accounts for the nonlinear properties of the signal, thereby reducing
errors.

The difference in MSE between the first- and second-order models, as shown in Table 3, confirms that
the second-order algorithm handles dynamic changes in signal parameters, such as amplitude and frequency,
more effectively. The second-order model maintains consistently low MSE values even under challenging
conditions, highlighting its ability to enhance signal processing accuracy.

Mean-Square Error (MSE) Over Time

—— MSE (1st-order Volterra)

104 —— MSE (2nd-order Volterra)

0.8

0.6 4

MSE

0.4+

0.24

U

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Time

Fig. 4. Dependence of mean square error (MSE) on time for Volterra series models

Additionally, the signal reconstruction algorithm in the frequency domain based on Volterra series
improves signal noise immunity due to its adaptive approach to frequency filtering and interference
compensation. The second-order model effectively reduces the impact of interchannel and intersymbol
interference, as illustrated in Fig. 4. At 0,44 seconds, where the MSE for the first-order model reaches 0,027,
the second-order model reduces the error to 0,004, confirming the algorithm’s capability to ensure stable
performance under significant noise conditions.

Table 4. Analysis of the dynamics of the mean square deviation (MSD) metric

Time (s) MSD (1st-order Volterra) MSD (2nd-order Volterra)
0,00 0,000 0,000
0,11 0,045 0,005
0,22 0,062 0,009
0,33 0,037 0,005
0,44 0,090 0,010
0,56 0,062 0,009
0,67 0,037 0,005
0,78 0,090 0,010
0,89 0,062 0,009
1,00 0,000 0,000
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The data in Table 4 and Fig. 5 indicate that the second-order model reduces the MSD within the
specified time intervals, confirming its ability to account for the nonlinear characteristics of the signal. At
the time point 0,44 s, the MSD for the first-order model is 0,090, while for the second-order model, it is
0,010, corresponding to a 20,55% reduction in deviation. Similar efficiency is observed at other time points:
at 0,11 s, the reduction is 18,5%, and at 0,22 s, it is 19,4%, demonstrating the algorithm’s effectiveness in
challenging radio conditions.

The algorithm also ensures stable system performance in the presence of noise. The use of adaptive
filtering and a dynamic approach to processing frequency components significantly reduces the impact of
interchannel and intersymbol interference. At the time point 0,78 s, where the MSD for the first-order model
reaches 0,090 due to noise, the second-order model decreases this value to 0,010, ensuring resilience to
interference and accurate signal reconstruction.

Mean-Square Deviation (MSD) Over Time

—— MSD (1st-order Volterra)
1.2 1 MSD (2nd-order Volterra)

1.0 1

0.8 4
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Time

Fig. 5. Dependence of the mean square deviation (MSD) on time for VVolterra series models

Conclusions and prospects for further research.

The experimental studies confirm the effectiveness of the proposed method for signal reconstruction
in the frequency domain based on Volterra series, advancing nonlinear system modeling. The algorithm
captures nonlinear interactions between frequency components, achieving notable improvements in
reconstruction accuracy, especially in noisy environments.

A key innovation is the integration of tensor factorization, reducing computational complexity while
maintaining precision and adaptability for real-time applications. Advanced regularization techniques,
including the Frobenius and L1 norms, enhance noise immunity, mitigate overfitting, and ensure stability
under challenging conditions.

This study introduces a unified framework that combines computational efficiency, robust
regularization, and the capability to model high-dimensional nonlinearities. Experimental results show the
second-order Volterra model significantly improves amplitude-frequency accuracy and reduces mean
square error by over 50% compared to first-order models, setting a benchmark for nonlinear signal
reconstruction and offering substantial potential for practical applications in telecommunications and signal
processing.

Future studies should focus on extending the algorithm to handle multichannel systems, enabling the
modeling of nonlinear interactions between signals in multidimensional space. Additionally, further
research could explore the optimization of computations through the integration of machine learning
techniques for automatic adaptation of regularization and tensor factorization parameters. Another
important direction is the investigation of the algorithm's potential for real-time applications, which will
require the development of faster computational procedures and efficient parallel execution strategies.
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