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ADAPTIVE APPROACH TO SPECTRUM MONITORING IN COGNITIVE RADIO
NETWORKS THROUGH SIGNAL DETECTION OPTIMIZATION

Soproniuk I., Komar O. Adaptive approach to spectrum monitoring in cognitive radio networks through signal
detection optimization. The article considers the improvement of the adaptive algorithm of the spectral monitoring method for
cognitive radio networks by introducing adaptive wavelet transforms and filters. The use of adaptive Morle and Dobechy wavelet
transforms, as well as adaptive Kalman, LMS, and RLS filters is proposed, which allows dynamically changing parameters
depending on the conditions of the radio environment. The comparative analysis with traditional methods showed that adaptive
methods significantly increase the efficiency of signal detection in conditions of low SNR values, reducing the noise level,
improving the accuracy of signal detection and reducing the probability of false alarms. The results of the study confirm the
perspective of using adaptive methods to increase the reliability and efficiency of spectral monitoring in real operating conditions.
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Conponiok LI, Komap O.M. AnanTuBHU# miaxia A0 cneKTPajJbLHOr0 MOHITOPMHIY B KOTHITUBHUX pajiioMepe:kax
3a paxyHOK ONTHMi3anii JeTeKTyBaHHSI CHTHANIB. Y CTaTTi PO3IVITHYTO YZOCKOHAJICHHS aIalTHBHOTO aTOPUTMY METOIY
CIEKTPAJIbHOTO MOHITOPHMHTY JUIS KOTHITHBHHX paJgioMepeX IUIIXOM BIPOBA/UKEHHS aJalTUBHUX BEHBIET-IIEPETBOPEHb Ta
¢GibTpiB. 3aNPONOHOBAHO BUKOPUCTAHHS aJalTHBHUX BeliBieT-niepeTBopeHs Mopire Ta JloGemri, a Takoxk aganTUBHUX (LIBTPIB
Kanmana, LMS ta RLS, mo n03Boise MUHAMIYHO 3MiHIOBATH MapaMeTpH 3alieKHO BiJl YMOB paniocepenoBuma. [IposeneHuit
MOPIBHAUIBHAN aHaNi3 3 TpPaAWIiHHUMKM METOJaMH IOKa3aB, LI0 AJalTUBHI METOAM 3HAYHO MiABHIIYIOTh €()EKTUBHICTH
JETEKTYBaHH: CUTHAIIIB B yMOBaX HU3bKUX 3Ha4eHb SNR, 3MEHIIyI04H piBEHB IIyMY, HOKPAIYIO4YH TOYHICTh BUSIBJICHHS CUTHAIIB
1 BHIKYIOUH HMOBIpPHICT XHOHHMX TpPHUBOT. Pe3ynbTaTH OOCHIIKEHHS MiATBEPIKYIOTh IEPCHEKTUBHICTh BHUKOPHCTAHHS
aTaNTHBHUX METOMIB JUIS WiABUIICHHS HAMIHHOCTI Ta €(QEKTUBHOCTI CIEKTPAIFHOTO MOHITOPHMHTY B pEalbHHX YMOBaX
eKCILTyaTalrii.

KorouoBi cioBa: criekTpanbHHH MOHITOPHHI, KOTHITHBHI paJioMepexi, BEeHBIeT-IepeTBOPEeHHs, ananTHBHI (iabTpH,
MeToau 00poOKH curHaliB, Hu3bkuit SNR, 1eTeKTyBaHHS CUTHAIIB.

Statement of a scientific problem.

The adaptive algorithm of the spectrum monitoring method (Fig. 1) requires further enhancement
through the integration of adaptive wavelet transforms and adaptive filters capable of adjusting parameters
in real-time based on the conditions of the radio environment, ensuring stable and efficient operation of the
telecommunication system. The necessity for these enhancements is substantiated by the following reasons.

1. Rapidly changing radio environment conditions. Static signal processing methods are inadequate
for effectively adapting to these changes, which leads to a reduction in the accuracy of signal detection.
Adaptive wavelet transforms, however, can dynamically adjust their parameters to optimize signal analysis,
thereby ensuring higher detection accuracy in fluctuating environments.

2. Mitigation of noise and distortion impacts. As the Signal-to-Noise Ratio (SNR) decreases, the
influence of noise and distortions on signals significantly increases. Adaptive filters, which can adjust their
parameters in real-time, provide more effective noise filtering and minimize distortions, thus enhancing the
quality of signal detection. This adaptive capability is critical for maintaining signal integrity under
challenging conditions.

3. Improvement in True Positive Rate (TPR) for signal detection. Simulation results have
demonstrated that the TPR for signal detection diminishes as SNR decreases. The use of adaptive wavelet
transforms allows for better isolation of useful signals from noise, thereby increasing the TPR even under
low SNR conditions. This improvement is crucial for reliable communication in noisy environments.

4. Optimization of computational resources. Adaptive methods can optimize the use of computational
resources by adjusting the parameters of filters and transforms according to current conditions. This
capability reduces processing delays (PD) and enhances system responsiveness, leading to more efficient
use of available resources while maintaining high processing speed.
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5. Reduction in False Positive Rate (FPR). Adaptive filters can lower the likelihood of false positives
(FPR) by more accurately separating the useful signal from noise. This reduction is particularly important
for decreasing the number of false alarms, thereby improving the overall reliability and trustworthiness of
the system.

6. Flexibility and scalability. Adaptive methods provide the system with the flexibility to adjust
parameters for different types of signals and conditions, making the system more versatile and scalable for
handling a wide range of signals in various radio environments. This adaptability ensures that the system
remains effective across different scenarios, supporting its application in diverse and dynamic radio
conditions.
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Fig. 1. Adaptive algorithm of the spectral monitoring method

Research analysis.

The analysis of existing domestic and foreign research on spectrum sensing techniques reveals
several gaps that this study aims to address [ 1-17]. Studies [1] and [2] focused on evaluating performance
between matched filter and energy detectors, as well as proposing adaptive double-threshold energy
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detectors, yet they did not explore the integration of adaptive wavelet transforms and advanced filtering
methods under varying SNR conditions. Research [3], [10], and [15] examined cyclostationary algorithms
for signal analysis and detection but lacked consideration for adaptive filtering techniques that can enhance
detection accuracy in dynamic radio environments. Works [4], [6], [7], [12], [14], [16], and [17] surveyed
various spectrum sensing algorithms and cooperative sensing methods, however, they did not delve into
the application of adaptive methods like Kalman, LMS, and RLS filters combined with adaptive wavelet
transforms for improved performance under challenging conditions such as low SNR, fading, and frequency
distortions.

In studies [5] and [9], the focus was on non-stationary signal processing and machine learning
applications in signal processing, respectively, but these did not specifically address their applicability to
spectrum monitoring in cognitive radio networks using adaptive techniques. Research [8] compared energy
detection and feature detection methods without incorporating adaptive approaches that adjust to real-time
environmental changes. Studies [11] and [13] discussed optimal linear cooperation and noise reduction
strategies but did not consider the benefits of adaptive wavelet transforms and filters in enhancing spectrum
sensing efficiency.

The purpose of the work.

The purpose of this study is to develop a method that integrates adaptive wavelet transforms (Morlet
and Daubechies) and adaptive filtering techniques (Kalman, LMS, RLS) into spectrum monitoring
processes, aiming to significantly improve detection accuracy, noise mitigation, and overall system
reliability under various challenging conditions, thereby addressing the gaps identified in previous research
and advancing the efficiency of spectrum sensing in cognitive radio networks.

Presentation of the main material and substantiation of the obtained research results.

To conduct an experiment on improving the spectral monitoring method, we will take the adaptive
wavelet transforms of Morle and Dobesha. A comparative analysis of adaptive and static wavelet
transformations is presented in the table. 1.

Table 1. Comparative analysis of adaptive and static wavelet transformations

Parameter Static Adaptive
Type of Transform Morlet, Daubechies Morlet, Daubechies
Scaling Parameters (a) Fixed Variable, adapted to signal
conditions
Translation Parameters (b) Fixed Variable, adapted to signal
conditions
Time Resolution Constant Adaptive, chan_g_es with signal
conditions
Frequency Resolution Constant Adaptive, chan_g_e s with signal
conditions
Sensitivity to Changes Low High
Fading Handling Limited Effective
Freqguency Distortion Handling Limited Effective
Ability to Isolate Useful Signals Moderate High
Filter Application Fixed filtering parameters Adaptive félgzaséeparameters
Computational Resources Lower Higher, but optimized
Processing Delay (PD) Lower Improved accuracy
Real-Time Suitability Limited High, due to adaptation

The primary distinction between adaptive wavelet transforms such as Morlet and Daubechies, and their
static counterparts, lies in their ability to dynamically adjust scaling and translation parameters in response to
the signal conditions. This adaptive capacity allows these transforms to more effectively process signals,
especially under challenging conditions such as low Signal-to-Noise Ratios (SNR), fading, and frequency
distortions.

In a dynamic radio environment, where signal characteristics can fluctuate rapidly, static wavelet
transforms are limited by their fixed parameters. These static transforms cannot modify their scaling and
translation to match the variations in the signal, leading to suboptimal performance in terms of signal
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detection and noise reduction. On the other hand, adaptive wavelet transforms can modify their parameters
in real-time, enhancing their ability to isolate useful signals from noise and accurately track signal changes
over time.

This dynamic adjustment capability is particularly critical when dealing with low SNR, where noise
can significantly obscure the signal. Adaptive transforms can fine-tune their parameters to focus on the most
relevant frequency components, thereby improving signal clarity and detection accuracy. Additionally, in the
presence of signal fading and frequency distortions, adaptive wavelets can alter their scaling and translation
to compensate for these effects, ensuring that the signal is accurately represented and processed.

The adaptive Morlet wavelet is a complex function that combines a sinusoidal wave with a Gaussian
envelope, providing high-frequency resolution. Considering distortions and fading, the adaptive Morlet
wavelet is calculated using the following formula:

WTyoriet (£, f) = f x(tYH(E)eI(B+0+0) .yt e ap (0L
—o0 6

o 7 R G
Morlet wavelet function Yyjomer, o (£) = 7=e “a e 2a2

1 . . ) . t-b
where N normalization factor to ensure constancy of wavelet energy at different scales; el
(t=b)?

complex sine wave with a central frequency f, ; e 2a*> — the Gaussian envelope, which determines the
temporal localization of the wave.

The adaptive wavelet of the Dobechy transform, taking into account distortions and fading, is
calculated by the mathematical expression:

WTDaubechies (t' f) = f x(t,)H(t,)ej(ﬂt +0+0) . ll}]*)aubechies, a,b (t a_t)dt,

t—b—ka)
a

. . 1
Wavelet Dobechy function Yp,ypechies, a,p (t) = ﬁZk crdp (

where ¢, — fixed coefficients that determine the shape of the wavelet at each level of decomposition;
¢ — the scaling function is the main function for building wavelets. In the case of Dobechy wavelets,
these are polynomials that provide a compromise between time and frequency resolution;

(H’_ka) —an expression that provides a scaling and translation (displacement) function for accurate
signal analysis in different frequency ranges.

In addition to the aforementioned adaptive transforms, improving the efficiency of the spectrum
monitoring method also requires implementing adaptive filtering. The Butterworth, Chebyshev, and Kaiser
filters proposed in the algorithm (Fig. 1) should be replaced with adaptive filters such as Kalman, LMS,
and RLS filters, as these are better suited to respond to the variable conditions of the signal and radio
environment, thereby enhancing the overall efficiency of the spectrum monitoring method.

Adaptive Kalman Filter: This filter should be applied during the initial signal processing stage to
remove noise and improve signal quality before further analysis. It is an optimization-based recursive filter
that estimates the state of a dynamic system with noise and can adaptively change its parameters based on
observation results. It is described by the following formulas:

State Update:

Xilk—1 = AXp_qjr—1 + Buy 3)
Pyjk—1 = APi_1 14" + Q'

Measurement Update:
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Ky = Pye—1H" (HPg—1H" + R)™!
Xijke = Xpejk—1 + K (2 — HXgeje—1) 4)
Py = (I = KiH) Pyje—1

where x 1 — predicted state estimate;
A — state transition matrix;
B — control matrix;; u; — control vector;
Py k-1 — predicted error covariance matrix;
Q — process noise covariance matrix;
K}, — Kalman gain; H — measurement matrix;
R — measurement noise covariance matrix;
zj — measurement vector; x; |, — updated state estimate;
Py — Updated error covariance matrix;
I — identity matrix.

2. Adaptive Least Mean Squares (LMS) Filter: This filter minimizes the mean squared error between
the desired signal and the actual filter output. The LMS filter adaptively adjusts its coefficients based on
the input signal and noise. It is particularly useful during the recursive time segmentation stage of the
algorithm for adaptive filtering of each segment, taking into account current conditions such as fading and
distortions. The coefficient adaptation formula for the LMS filter is mathematically expressed as:

wn+ 1) =w(n) + pe(n)x(n) 5)

where w(n) — is the vector of filter coefficients at step n; u — is the learning rate; e(n) — is the error at step
n; x(n) — is the input signal at step n.

Recursive Least Squares (RLS) Filter. This filter is more complex and accurate than the LMS filter
as it minimizes the sum of weighted least squares errors, quickly responding to changes in the signal and
providing high filtering accuracy. The RLS filter can be applied during the initial signal processing stage
or during the adaptive segmentation stage to enhance the quality of filtering under conditions of varying
noise and fading. The coefficient update formula for the RLS filter is expressed as:

w(n) = wn—1) + k(me(n), ©)
P(n—1)x(n) . . .
AT (P (D) is the gain vector;

_1 1y _ P=D)x(m)xT ()P (n-1)
P(n) = /I(P (-1 A+xT(n)P(n-1)x(n)

A —is the forgetting factor;
e(n) = d(n) —w’(n— 1)x(n) —is the error signal.

where k(n) =

) — is the error covariance matrix;

The adaptive filters—Kalman, LMS, and RLS—at various stages of monitoring collectively ensure
precise and dynamic tracking and correction of signals in challenging radio environments. This is achieved
through their ability to adapt to changing conditions and effectively reduce noise and distortions. These
adaptive filters work synergistically to maintain signal integrity, especially in scenarios where the radio
environment is highly variable and prone to interference.

To evaluate their performance, we will conduct signal detection tests and examine the effectiveness
of these adaptive filters, along with wavelet transforms, under low SNR conditions of 1, -5, -12, -15, and -
21 dB. Testing these filters under varying low SNR conditions allows us to simulate real-world scenarios
where signal degradation is significant. By analyzing their performance across different SNR levels, we
can better understand the strengths and limitations of each filter in mitigating noise and preserving signal
fidelity. This approach not only validates the effectiveness of adaptive filters in dynamic environments but
also provides insights into optimizing their application for improving the overall reliability and accuracy of
spectrum monitoring systems. (Table 2).
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Table 2. Initial data for experimental calculations

397

Parameter

Value

Signal Types

4G LTE, 5G NR, Wi-Fi 6, DVB-T2, GPS

Sensitivity, 1bm

-94, -116, -107, -95, -100

SNR, 1b 1,-5,-12,-15, -21
Channel Type AWGN

Number of Primary Users 50

Probability of False Detection 0,005

FFT Size (N) 512

Number of Frames (T) 250

Fading H = Hy - exp(j6),ne Hy = 1,0, 6 =7/,

Frequency Distortion

Ny=2r-0,1;, A =2r-0,056 =2r-0,02

Additive White Gaussian Noise (AWGN) 0?=0,1
Adaptive Wavelet Transform Morlet and Daubechies
Adaptive Kalman Filter Settings Q=01,R=01

Adaptive LMS Filter Settings

Learning rate (1) = 0,01, filter order= 4

Adaptive RLS Filter Settings

A =098, filter order =5
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Fig. 2. Detection taking into account adaptive transformations and filters SNR= 1dB

Detection of Signals in AWGN Channel at SNR = -5 dB
1.0 * »
>
' :
0.8 1 5
r »
» y
’
3
P 3
1 3 o
g 0.6 L 2 A
o
g
(S S (S S S SN SR R U GRS ISP o VU DU SUPIS SRR S PR, S
g ] r
H |
& o4
0.2 4 ——- Threshold
—8_ 4G LTE (Efficiency: 20.91%)
—8_ 5G NR (Efficiency: 81.82%)
—8_ Wi-Fi 6 (Efficiency: 90.91%)
—2_ DVB-T2 (Efficiency: 63.64%)
0.07 _®  GPs (Efficiency: 81.82%)

T T T
20.0 225 25.0

T T T T T
30.0 32.5 35.0 375 40.0

Frequency (MHz)

T
27.5
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Detection of Signals in AWGN Channel at SNR = -12 dB
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Fig. 4. Detection taking into account adaptive transformations and filters SNR= -12dB
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Fig. 5. Detection taking into account adaptive transformations and filters SNR= —-15dB
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Fig. 6. Detection taking into account adaptive transformations and filters SNR=-21 dB

The analysis presented in Fig.2 — 6 demonstrates that the application of adaptive wavelet transforms
(Morlet and Daubechies) and adaptive filters (Kalman, LMS, RLS) within the spectrum monitoring method
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significantly enhances signal detection efficiency under challenging low SNR conditions. In comparison to
static wavelet transforms and traditional filters like Butterworth, Chebyshev, and Kaiser, adaptive methods
provide several key advantages.

1. Improvement in Signal Detection Accuracy (TPR): Adaptive methods consistently exhibit higher
True Positive Rates (TPR). For instance, the detection efficiency for 4G LTE increased from 72,73% to
82,55%, for 5G NR from 27,27% to 45,50%, and for Wi-Fi 6 from 81,82% to 90,15%. These results indicate
that adaptive techniques are better at identifying and preserving useful signal components, even in
environments with significant noise interference.

2. Reduction in Average Noise Level (ANL): Adaptive filters effectively reduce the overall noise level,
crucial for maintaining signal integrity. The Average Noise Level (ANL) decreased from 0,16 to 0,12 for
GPS signals at an SNR of -21 dB. This reduction is significant as it directly impacts the clarity and quality of
the detected signal, enhancing overall system performance.

3. Enhanced Filtering Efficiency (FEF): The ability to adaptively adjust filtering parameters leads to
improved Filtering Efficiency (FEF). For DVB-T2 signals, FEF increased from 0,04 to 0,06 at an SNR of -
12 dB. This demonstrates the superior capability of adaptive methods to fine-tune filtering processes in
response to varying signal conditions, ensuring optimal performance.

4. Reduction in False Positive Rate (FPR): The use of adaptive methods also reduces the False Positive
Rate (FPR), which is critical for minimizing false alarms and improving system reliability. For 4G LTE, the
FPR decreased from 0,03 to 0,01 at an SNR of -5 dB. This reduction highlights the precision of adaptive
filters in distinguishing between noise and actual signals, thereby reducing unnecessary interventions.

5. Minimization of Frequency Distortion (FD): Adaptive methods are more effective at preserving the
frequency characteristics of signals, which is essential for accurate signal reconstruction. For Wi-Fi 6 signals,
Frequency Distortion (FD) was reduced from 0,25 to 0.20 at an SNR of -21 dB. This capability is particularly
important in environments where frequency stability is critical for maintaining communication quality.

These calculations confirm that adaptive wavelet transforms and filters substantially enhance the
efficiency of spectrum monitoring methods, particularly in environments with fading and distortions. This
makes them more reliable for real-world applications where signal conditions are often variable and
unpredictable.

Conclusions and prospects for further research.

The conducted experimental studies further emphasize that the successful application of the
spectrum monitoring method requires careful attention to the number of samples N-T, which determines
the decision-making delay, and to the frequency resolution, which serves as a constraint in system
development. The selection of N, T, and the threshold a should be based on knowledge of the frequency
resolution and SNR values in operational conditions, as well as on the requirements for minimum
Probability of Detection (PD) and maximum Probability of False Alarm (PFA). The threshold « is
determined relative to the PFA, underscoring the importance of precise parameter tuning to ensure high
detection efficiency.

This scientific justification highlights the critical role of adaptive techniques in optimizing signal
detection processes, ensuring that spectrum monitoring systems remain efficient and reliable under a wide
range of challenging conditions.

This study highlights the crucial role of adaptive wavelet transforms (Morlet and Daubechies) and
adaptive filtering techniques (Kalman, LMS, RLS) in significantly enhancing the efficiency of spectrum
monitoring methods, especially in challenging low SNR environments. The research demonstrates that the
integration of these adaptive methods leads to superior signal detection accuracy, effective noise mitigation,
enhanced filtering efficiency, and a substantial reduction in false positives, all of which contribute to
improved reliability and performance of telecommunication systems. Moreover, the ability of adaptive
techniques to preserve frequency characteristics under dynamic conditions underscores their value in
maintaining communication quality in real-world applications. The findings confirm that precise parameter
optimization, such as the selection of the number of samples N-T, frequency resolution, and threshold a, is
essential for maximizing detection efficiency and ensuring the robustness of the spectrum monitoring
process. The research opens up avenues for further exploration into the development of more advanced
adaptive methodologies to enhance the robustness and effectiveness of spectrum monitoring systems in
increasingly complex radio environments.
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