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ADAPTIVE APPROACH TO SPECTRUM MONITORING IN COGNITIVE RADIO 

NETWORKS THROUGH SIGNAL DETECTION OPTIMIZATION 

 
Soproniuk I., Komar O. Adaptive approach to spectrum monitoring in cognitive radio networks through signal 

detection optimization. The article considers the improvement of the adaptive algorithm of the spectral monitoring method for 

cognitive radio networks by introducing adaptive wavelet transforms and filters. The use of adaptive Morle and Dobechy wavelet 

transforms, as well as adaptive Kalman, LMS, and RLS filters is proposed, which allows dynamically changing parameters 

depending on the conditions of the radio environment. The comparative analysis with traditional methods showed that adaptive 

methods significantly increase the efficiency of signal detection in conditions of low SNR values, reducing the noise level, 

improving the accuracy of signal detection and reducing the probability of false alarms. The results of the study confirm the 

perspective of using adaptive methods to increase the reliability and efficiency of spectral monitoring in real operating conditions. 

Keywords: spectral monitoring, cognitive radio networks, adaptive wavelet transforms, adaptive filters, signal processing 

methods, low SNR, signal detection 

 
Сопронюк І.І., Комар О.М. Адаптивний підхід до спектрального моніторингу в когнітивних радіомережах 

за рахунок оптимізації детектування сигналів. У статті розглянуто удосконалення адаптивного алгоритму методу 

спектрального моніторингу для когнітивних радіомереж шляхом впровадження адаптивних вейвлет-перетворень та 

фільтрів. Запропоновано використання адаптивних вейвлет-перетворень Морле та Добеші, а також адаптивних фільтрів 

Калмана, LMS та RLS, що дозволяє динамічно змінювати параметри залежно від умов радіосередовища. Проведений 

порівняльний аналіз з традиційними методами показав, що адаптивні методи значно підвищують ефективність 

детектування сигналів в умовах низьких значень SNR, зменшуючи рівень шуму, покращуючи точність виявлення сигналів 

і знижуючи ймовірність хибних тривог. Результати дослідження підтверджують перспективність використання 

адаптивних методів для підвищення надійності та ефективності спектрального моніторингу в реальних умовах 

експлуатації. 

Ключові слова: спектральний моніторинг, когнітивні радіомережі, вейвлет-перетворення, адаптивні фільтри, 

методи обробки сигналів, низький SNR, детектування сигналів. 

 
 

Statement of a scientific problem. 

The adaptive algorithm of the spectrum monitoring method (Fig. 1) requires further enhancement 

through the integration of adaptive wavelet transforms and adaptive filters capable of adjusting parameters 

in real-time based on the conditions of the radio environment, ensuring stable and efficient operation of the 

telecommunication system. The necessity for these enhancements is substantiated by the following reasons. 

1. Rapidly changing radio environment conditions. Static signal processing methods are inadequate 

for effectively adapting to these changes, which leads to a reduction in the accuracy of signal detection. 

Adaptive wavelet transforms, however, can dynamically adjust their parameters to optimize signal analysis, 

thereby ensuring higher detection accuracy in fluctuating environments. 

2. Mitigation of noise and distortion impacts. As the Signal-to-Noise Ratio (SNR) decreases, the 

influence of noise and distortions on signals significantly increases. Adaptive filters, which can adjust their 

parameters in real-time, provide more effective noise filtering and minimize distortions, thus enhancing the 

quality of signal detection. This adaptive capability is critical for maintaining signal integrity under 

challenging conditions. 

3. Improvement in True Positive Rate (TPR) for signal detection. Simulation results have 

demonstrated that the TPR for signal detection diminishes as SNR decreases. The use of adaptive wavelet 

transforms allows for better isolation of useful signals from noise, thereby increasing the TPR even under 

low SNR conditions. This improvement is crucial for reliable communication in noisy environments. 

4. Optimization of computational resources. Adaptive methods can optimize the use of computational 

resources by adjusting the parameters of filters and transforms according to current conditions. This 

capability reduces processing delays (PD) and enhances system responsiveness, leading to more efficient 

use of available resources while maintaining high processing speed. 
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5. Reduction in False Positive Rate (FPR). Adaptive filters can lower the likelihood of false positives 

(FPR) by more accurately separating the useful signal from noise. This reduction is particularly important 

for decreasing the number of false alarms, thereby improving the overall reliability and trustworthiness of 

the system. 

6. Flexibility and scalability. Adaptive methods provide the system with the flexibility to adjust 

parameters for different types of signals and conditions, making the system more versatile and scalable for 

handling a wide range of signals in various radio environments. This adaptability ensures that the system 

remains effective across different scenarios, supporting its application in diverse and dynamic radio 

conditions. 

 

 
 

Fig. 1. Adaptive algorithm of the spectral monitoring method 

 

Research analysis. 

The analysis of existing domestic and foreign research on spectrum sensing techniques reveals 

several gaps that this study aims to address [ 1-17]. Studies [1] and [2] focused on evaluating performance 

between matched filter and energy detectors, as well as proposing adaptive double-threshold energy 
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detectors, yet they did not explore the integration of adaptive wavelet transforms and advanced filtering 

methods under varying SNR conditions. Research [3], [10], and [15] examined cyclostationary algorithms 

for signal analysis and detection but lacked consideration for adaptive filtering techniques that can enhance 

detection accuracy in dynamic radio environments. Works [4], [6], [7], [12], [14], [16], and [17] surveyed 

various spectrum sensing algorithms and cooperative sensing methods, however, they did not delve into 

the application of adaptive methods like Kalman, LMS, and RLS filters combined with adaptive wavelet 

transforms for improved performance under challenging conditions such as low SNR, fading, and frequency 

distortions. 

In studies [5] and [9], the focus was on non-stationary signal processing and machine learning 

applications in signal processing, respectively, but these did not specifically address their applicability to 

spectrum monitoring in cognitive radio networks using adaptive techniques. Research [8] compared energy 

detection and feature detection methods without incorporating adaptive approaches that adjust to real-time 

environmental changes. Studies [11] and [13] discussed optimal linear cooperation and noise reduction 

strategies but did not consider the benefits of adaptive wavelet transforms and filters in enhancing spectrum 

sensing efficiency. 

The purpose of the work. 

The purpose of this study is to develop a method that integrates adaptive wavelet transforms (Morlet 

and Daubechies) and adaptive filtering techniques (Kalman, LMS, RLS) into spectrum monitoring 

processes, aiming to significantly improve detection accuracy, noise mitigation, and overall system 

reliability under various challenging conditions, thereby addressing the gaps identified in previous research 

and advancing the efficiency of spectrum sensing in cognitive radio networks. 

Presentation of the main material and substantiation of the obtained research results. 

To conduct an experiment on improving the spectral monitoring method, we will take the adaptive 

wavelet transforms of Morle and Dobesha. A comparative analysis of adaptive and static wavelet 

transformations is presented in the table. 1. 

 

Table 1. Comparative analysis of adaptive and static wavelet transformations 

Parameter Static Adaptive 

Type of Transform Morlet, Daubechies Morlet, Daubechies 

Scaling Parameters (a) Fixed Variable, adapted to signal 

conditions 

Variable, adapted to signal 

conditions 
Translation Parameters (b) Fixed 

Time Resolution Constant 
Adaptive, changes with signal 

conditions 

Frequency Resolution Constant 
Adaptive, changes with signal 

conditions 

Sensitivity to Changes Low High 

Fading Handling Limited Effective 

Frequency Distortion Handling Limited Effective 

Ability to Isolate Useful Signals Moderate High 

Filter Application Fixed filtering parameters 
Adaptive filters, parameters 

change 

Computational Resources Lower Higher, but optimized 

Processing Delay (PD) Lower Improved accuracy 

Real-Time Suitability Limited High, due to adaptation 

 

The primary distinction between adaptive wavelet transforms such as Morlet and Daubechies, and their 

static counterparts, lies in their ability to dynamically adjust scaling and translation parameters in response to 

the signal conditions. This adaptive capacity allows these transforms to more effectively process signals, 

especially under challenging conditions such as low Signal-to-Noise Ratios (SNR), fading, and frequency 

distortions. 

In a dynamic radio environment, where signal characteristics can fluctuate rapidly, static wavelet 

transforms are limited by their fixed parameters. These static transforms cannot modify their scaling and 

translation to match the variations in the signal, leading to suboptimal performance in terms of signal 



Науковий журнал "Комп’ютерно-інтегровані технології: освіта, наука, виробництво"   

Луцьк, 2024. Випуск № 56 

 

 

© Soproniuk I.I., Komar O.M. 

 395 

detection and noise reduction. On the other hand, adaptive wavelet transforms can modify their parameters 

in real-time, enhancing their ability to isolate useful signals from noise and accurately track signal changes 

over time. 

This dynamic adjustment capability is particularly critical when dealing with low SNR, where noise 

can significantly obscure the signal. Adaptive transforms can fine-tune their parameters to focus on the most 

relevant frequency components, thereby improving signal clarity and detection accuracy. Additionally, in the 

presence of signal fading and frequency distortions, adaptive wavelets can alter their scaling and translation 

to compensate for these effects, ensuring that the signal is accurately represented and processed. 

The adaptive Morlet wavelet is a complex function that combines a sinusoidal wave with a Gaussian 

envelope, providing high-frequency resolution. Considering distortions and fading, the adaptive Morlet 

wavelet is calculated using the following formula: 

 

WTMorlet(𝑡, 𝑓) = ∫ 𝑥(𝑡′)𝐻(𝑡′)𝑒𝑗(𝛺𝑡′+𝜃+𝛩) ⋅ 𝜓Morlet, 𝑎,𝑏
∗  (𝑡′−𝑡

𝑎
)𝑑𝑡′

∞

−∞

𝑀𝑜𝑟𝑙𝑒𝑡 𝑤𝑎𝑣𝑒𝑙𝑒𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝜓Morlet, 𝑎,𝑏
∗ (𝑡) =

1

√𝑎
𝑒𝑗2𝜋𝑓0

𝑡−𝑏

𝑎  𝑒
−

(𝑡−𝑏)2

2𝑎2

      (1) 

 

where  
1

√𝑎
 – normalization factor to ensure constancy of wavelet energy at different scales;  𝑒𝑗2𝜋𝑓0

𝑡−𝑏

𝑎  – 

complex sine wave with a central frequency 𝑓0 ;  𝑒
−

(𝑡−𝑏)2

2𝑎2  – the Gaussian envelope, which determines the 

temporal localization of the wave. 

 

The adaptive wavelet of the Dobechy transform, taking into account distortions and fading, is 

calculated by the mathematical expression: 

 

WTDaubechies(𝑡, 𝑓) = ∫ 𝑥(𝑡′)𝐻(𝑡′)𝑒𝑗(𝛺𝑡′+𝜃+𝛩) ⋅ 𝜓Daubechies, 𝑎,𝑏
∗  (𝑡′−𝑡

𝑎
)𝑑𝑡′

∞

−∞

𝑊𝑎𝑣𝑒𝑙𝑒𝑡 𝐷𝑜𝑏𝑒𝑐ℎ𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝜓Daubechies, 𝑎,𝑏
∗ (𝑡) =

1

√𝑎
∑ 𝑐𝑘𝜙𝑘 (

𝑡−𝑏−𝑘𝑎

𝑎
)

                (2) 

 

where 𝑐𝑘 – fixed coefficients that determine the shape of the wavelet at each level of decomposition;  

𝜙 – the scaling function is the main function for building wavelets. In the case of Dobechy wavelets, 

these are polynomials that provide a compromise between time and frequency resolution;  

(
𝑡−𝑏−𝑘𝑎

𝑎
) – an expression that provides a scaling and translation (displacement) function for accurate 

signal analysis in different frequency ranges. 

 

In addition to the aforementioned adaptive transforms, improving the efficiency of the spectrum 

monitoring method also requires implementing adaptive filtering. The Butterworth, Chebyshev, and Kaiser 

filters proposed in the algorithm (Fig. 1) should be replaced with adaptive filters such as Kalman, LMS, 

and RLS filters, as these are better suited to respond to the variable conditions of the signal and radio 

environment, thereby enhancing the overall efficiency of the spectrum monitoring method. 

Adaptive Kalman Filter: This filter should be applied during the initial signal processing stage to 

remove noise and improve signal quality before further analysis. It is an optimization-based recursive filter 

that estimates the state of a dynamic system with noise and can adaptively change its parameters based on 

observation results. It is described by the following formulas: 

State Update: 

 
𝑥𝑘|𝑘−1 = 𝐴𝑥𝑘−1|𝑘−1 + 𝐵𝑢𝑘

𝑃𝑘|𝑘−1 = 𝐴𝑃𝑘−1|𝑘−1𝐴𝑇 + 𝑄
,             (3) 

 

Measurement Update: 
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𝐾𝑘 =  𝑃𝑘|𝑘−1𝐻𝑇(𝐻𝑃𝑘|𝑘−1𝐻𝑇 + 𝑅)−1

𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐾𝑘 (𝑧𝑘 − 𝐻𝑥𝑘|𝑘−1)    

𝑃𝑘|𝑘 =  (𝐼 − 𝐾𝑘𝐻)𝑃𝑘|𝑘−1

                (4) 

 

where 𝑥𝑘|𝑘−1 – predicted state estimate; 

𝐴 – state transition matrix; 

𝐵 – control matrix;; 𝑢𝑘 – control vector; 

𝑃𝑘|𝑘−1 – predicted error covariance matrix; 

𝑄 – process noise covariance matrix; 

𝐾𝑘 – Kalman gain; 𝐻 – measurement matrix; 

𝑅 – measurement noise covariance matrix; 

𝑧𝑘 – measurement vector; 𝑥𝑘|𝑘 – updated state estimate; 

𝑃𝑘|𝑘 – updated error covariance matrix; 

𝐼 – identity matrix. 

 

2. Adaptive Least Mean Squares (LMS) Filter: This filter minimizes the mean squared error between 

the desired signal and the actual filter output. The LMS filter adaptively adjusts its coefficients based on 

the input signal and noise. It is particularly useful during the recursive time segmentation stage of the 

algorithm for adaptive filtering of each segment, taking into account current conditions such as fading and 

distortions. The coefficient adaptation formula for the LMS filter is mathematically expressed as: 

 

𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝜇𝑒(𝑛)𝑥(𝑛)                            (5) 

 

where 𝑤(𝑛) – is the vector of filter coefficients at step 𝑛; 𝜇 – is the learning rate; 𝑒(𝑛) – is the error at step 

𝑛; 𝑥(𝑛) – is the input signal at step 𝑛.  

 

Recursive Least Squares (RLS) Filter. This filter is more complex and accurate than the LMS filter 

as it minimizes the sum of weighted least squares errors, quickly responding to changes in the signal and 

providing high filtering accuracy. The RLS filter can be applied during the initial signal processing stage 

or during the adaptive segmentation stage to enhance the quality of filtering under conditions of varying 

noise and fading. The coefficient update formula for the RLS filter is expressed as: 

 

𝑤(𝑛) = 𝑤(𝑛 − 1) + 𝑘(𝑛)𝑒(𝑛),                    (6) 

 

where  𝑘(𝑛) =
𝑃(𝑛−1)𝑥(𝑛)

𝜆+𝑥𝑇(𝑛)𝑃(𝑛−1)𝑥(𝑛)
 – is the gain vector;  

𝑃(𝑛) =
1

𝜆
(𝑃(𝑛 − 1) −

𝑃(𝑛−1)𝑥(𝑛)𝑥𝑇(𝑛)𝑃(𝑛−1)

𝜆+𝑥𝑇(𝑛)𝑃(𝑛−1)𝑥(𝑛)
) – is the error covariance matrix;  

 𝜆 – is the forgetting factor;  

 𝑒(𝑛) = 𝑑(𝑛) − 𝑤𝑇(𝑛 − 1)𝑥(𝑛) – is the error signal. 

 

The adaptive filters—Kalman, LMS, and RLS—at various stages of monitoring collectively ensure 

precise and dynamic tracking and correction of signals in challenging radio environments. This is achieved 

through their ability to adapt to changing conditions and effectively reduce noise and distortions. These 

adaptive filters work synergistically to maintain signal integrity, especially in scenarios where the radio 

environment is highly variable and prone to interference. 

To evaluate their performance, we will conduct signal detection tests and examine the effectiveness 

of these adaptive filters, along with wavelet transforms, under low SNR conditions of 1, -5, -12, -15, and -

21 dB. Testing these filters under varying low SNR conditions allows us to simulate real-world scenarios 

where signal degradation is significant. By analyzing their performance across different SNR levels, we 

can better understand the strengths and limitations of each filter in mitigating noise and preserving signal 

fidelity. This approach not only validates the effectiveness of adaptive filters in dynamic environments but 

also provides insights into optimizing their application for improving the overall reliability and accuracy of 

spectrum monitoring systems. (Table 2). 
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Table 2. Initial data for experimental calculations 

Parameter Value 

Signal Types 4G LTE, 5G NR, Wi-Fi 6, DVB-T2, GPS 

Sensitivity, дБм -94, -116, -107, -95, -100 

SNR, дБ 1, -5, -12, -15, -21 

Channel Type AWGN 

Number of Primary Users 50 

Probability of False Detection 0,005 

FFT Size (N) 512 

Number of Frames (T) 250 

Fading 𝐻 = 𝐻0 ∙ 𝑒𝑥𝑝(𝑗𝜃), де 𝐻0 = 1,0;  𝜃 = 𝜋
4⁄  

Frequency Distortion 𝛺0 = 2𝜋 ∙ 0,1; ∆𝛺 = 2𝜋 ∙ 0,05; 𝛩 = 2𝜋 ∙ 0,02 

Additive White Gaussian Noise (AWGN) 𝜎2 = 0,1 

Adaptive Wavelet Transform Morlet and Daubechies 

Adaptive Kalman Filter Settings Q = 0,1, R = 0,1 

Adaptive LMS Filter Settings Learning rate (μ) = 0,01, filter order= 4 

Adaptive RLS Filter Settings λ = 0,98, filter order = 5 

 

 
Fig. 2. Detection taking into account adaptive transformations and filters SNR= 1dB 

 

 
Fig. 3. Detection taking into account adaptive transformations and filters SNR= –5 dB 
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Fig. 4. Detection taking into account adaptive transformations and filters SNR= –12dB 

 

 
Fig. 5. Detection taking into account adaptive transformations and filters SNR= –15dB 

 

 
Fig. 6. Detection taking into account adaptive transformations and filters SNR= -21 dB 

 

The analysis presented in Fig.2 – 6 demonstrates that the application of adaptive wavelet transforms 

(Morlet and Daubechies) and adaptive filters (Kalman, LMS, RLS) within the spectrum monitoring method 
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significantly enhances signal detection efficiency under challenging low SNR conditions. In comparison to 

static wavelet transforms and traditional filters like Butterworth, Chebyshev, and Kaiser, adaptive methods 

provide several key advantages. 

1. Improvement in Signal Detection Accuracy (TPR): Adaptive methods consistently exhibit higher 

True Positive Rates (TPR). For instance, the detection efficiency for 4G LTE increased from 72,73% to 

82,55%, for 5G NR from 27,27% to 45,50%, and for Wi-Fi 6 from 81,82% to 90,15%. These results indicate 

that adaptive techniques are better at identifying and preserving useful signal components, even in 

environments with significant noise interference. 

2. Reduction in Average Noise Level (ANL): Adaptive filters effectively reduce the overall noise level, 

crucial for maintaining signal integrity. The Average Noise Level (ANL) decreased from 0,16 to 0,12 for 

GPS signals at an SNR of -21 dB. This reduction is significant as it directly impacts the clarity and quality of 

the detected signal, enhancing overall system performance. 

3. Enhanced Filtering Efficiency (FEF): The ability to adaptively adjust filtering parameters leads to 

improved Filtering Efficiency (FEF). For DVB-T2 signals, FEF increased from 0,04 to 0,06 at an SNR of -

12 dB. This demonstrates the superior capability of adaptive methods to fine-tune filtering processes in 

response to varying signal conditions, ensuring optimal performance. 

4. Reduction in False Positive Rate (FPR): The use of adaptive methods also reduces the False Positive 

Rate (FPR), which is critical for minimizing false alarms and improving system reliability. For 4G LTE, the 

FPR decreased from 0,03 to 0,01 at an SNR of -5 dB. This reduction highlights the precision of adaptive 

filters in distinguishing between noise and actual signals, thereby reducing unnecessary interventions. 

5. Minimization of Frequency Distortion (FD): Adaptive methods are more effective at preserving the 

frequency characteristics of signals, which is essential for accurate signal reconstruction. For Wi-Fi 6 signals, 

Frequency Distortion (FD) was reduced from 0,25 to 0.20 at an SNR of -21 dB. This capability is particularly 

important in environments where frequency stability is critical for maintaining communication quality. 

These calculations confirm that adaptive wavelet transforms and filters substantially enhance the 

efficiency of spectrum monitoring methods, particularly in environments with fading and distortions. This 

makes them more reliable for real-world applications where signal conditions are often variable and 

unpredictable. 

Conclusions and prospects for further research. 

The conducted experimental studies further emphasize that the successful application of the 

spectrum monitoring method requires careful attention to the number of samples 𝑁⋅𝑇, which determines 

the decision-making delay, and to the frequency resolution, which serves as a constraint in system 

development. The selection of 𝑁, Т, and the threshold 𝛼 should be based on knowledge of the frequency 

resolution and SNR values in operational conditions, as well as on the requirements for minimum 

Probability of Detection (PD) and maximum Probability of False Alarm (PFA). The threshold 𝛼 is 

determined relative to the PFA, underscoring the importance of precise parameter tuning to ensure high 

detection efficiency. 

This scientific justification highlights the critical role of adaptive techniques in optimizing signal 

detection processes, ensuring that spectrum monitoring systems remain efficient and reliable under a wide 

range of challenging conditions.  

This study highlights the crucial role of adaptive wavelet transforms (Morlet and Daubechies) and 

adaptive filtering techniques (Kalman, LMS, RLS) in significantly enhancing the efficiency of spectrum 

monitoring methods, especially in challenging low SNR environments. The research demonstrates that the 

integration of these adaptive methods leads to superior signal detection accuracy, effective noise mitigation, 

enhanced filtering efficiency, and a substantial reduction in false positives, all of which contribute to 

improved reliability and performance of telecommunication systems. Moreover, the ability of adaptive 

techniques to preserve frequency characteristics under dynamic conditions underscores their value in 

maintaining communication quality in real-world applications. The findings confirm that precise parameter 

optimization, such as the selection of the number of samples N⋅T, frequency resolution, and threshold α, is 

essential for maximizing detection efficiency and ensuring the robustness of the spectrum monitoring 

process. The research opens up avenues for further exploration into the development of more advanced 

adaptive methodologies to enhance the robustness and effectiveness of spectrum monitoring systems in 

increasingly complex radio environments. 
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