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THE METHOD OF FORMING ENSEMBLES OF COMPLEX SIGNALS BASED ON MULTI-

SCALE DECOMPOSITION OF TIME INTERVALS AT DIFFERENT LEVELS OF DETAIL 

 
Bershov V., Yakymchuk N. The method of forming ensembles of complex signals based on multi-scale 

decomposition of time intervals at different levels of detail. This article addresses the challenges of forming signal ensembles 

in dynamic cognitive radio environments, focusing on the limitations of traditional methods. The study proposes a new approach 

based on multiscale time interval decomposition, which allows for the creation of signal ensembles at varying levels of temporal 

detail. The key innovation of this method is its ability to improve signal reproduction accuracy, reduce inter-symbol and inter-

channel interference, and enhance the overall efficiency of data processing. The method's adaptability to changing environmental 

conditions is also a core advantage, enabling better use of bandwidth and reduced transmission delay. Through the decomposition 

of time intervals into coarse, intermediate, and fine levels, this method allows for the detailed analysis of short-term, medium-term, 

and long-term signal components. Experimental results demonstrate the superiority of this approach in terms of signal recovery 

accuracy, noise resilience, and processing speed. These findings highlight the potential for optimizing signal processing in cognitive 

radio networks, particularly in environments with high levels of noise and interference. Future research aims to integrate machine 

learning algorithms to further enhance adaptability in real-time scenarios. 

Keywords: multiscale signal decomposition, cognitive radio environment, time intervals, adaptive algorithms, mean square 

deviation (MSE), signal-to-noise ratio (SNR), signal processing 

 

Бершов В.С., Якимчук Н.М. Метод формування ансамблів складних сигналів на основі багатомасштабної 

декомпозиції часових інтервалів на різних рівнях деталізації. У статті розглядаються проблеми формування ансамблів 

сигналів систем передачі у динамічних середовищах когнітивного радіо, при цьому, увага акцентується на обмеженнях 

традиційних методів синтезу ансамблів сигналів. Дослідження пропонує новий підхід, заснований на багатомасштабній 

декомпозиції часових інтервалів, що дозволяє створювати ансамблі сигналів на різних рівнях часової деталізації. 

Ключовим нововведенням цього методу є підвищення точності відтворення сигналів, зменшення міжсимвольних та 

міжканальних завад, а також підвищення загальної ефективності обробки даних. Важливою перевагою запропонованого 

методу  є його адаптивність  до змінних умов навколишнього середовища, що дозволяє краще використовувати пропускну 

здатність та зменшувати затримки передачі. За допомогою виконання декомпозиції часових інтервалів на грубі, проміжні 

та точні рівні, цей метод дає змогу детально аналізувати короткострокові, середньострокові та довгострокові компоненти 

сигналу в телекомунікаційних трактах. Отримані експериментальні результати демонструють переваги підходу для 

покращення точності відновлення сигналу, стійкості до шуму та швидкості обробки. Отримані результати підкреслюють 

потенціал оптимізації обробки сигналів у когнітивних радіомережах, особливо в умовах високого рівня шуму та завад. 

Подальші дослідження спрямовані на інтеграцію алгоритмів машинного навчання для підвищення адаптивності в режимі 

реального часу. 

Ключові слова: багатомасштабна декомпозиція сигналів, когнітивне радіосередовище, часові інтервали, 

адаптивні алгоритми, середньоквадратичне відхилення (MSE), співвідношення сигнал/шум (SNR), обробка сигналів. 
 

Statement of a scientific problem. 

Traditional methods of forming ensembles of complex signals in the modern dynamic cognitive radio 

environment demonstrate insufficient flexibility and adaptability, which creates the need to develop new 

methods that provide effective protection against inter-channel and inter-symbol interference, balance 

between indicators of signal volumes and the function of mutual correlation, have a high level of bandwidth 

indicators , low transmission delay and adaptability to changing environmental conditions. 

One of these methods is the method of forming ensembles of complex signals based on multi-scale 

decomposition of time intervals, which allows creating ensembles of signals at different levels of temporal 

detail, increasing the volume of ensembles of complex signals and improving their characteristics, in 

particular, increasing the efficiency of processing in the time domain. Multiscale Decomposition is a signal 

analysis method that allows you to decompose a signal into components of different durations in order to 

identify and analyze long-term, medium-term and short-term components of a signal (Fig. 1). 

1. The coarse level is responsible for detecting the main long-term components of the signal. The 

signal is divided into large time intervals that allow you to understand its general structure and trends. For 

example, the division can be made into intervals of 10 seconds if the signal is long, or into intervals of 1 

second for shorter signals. 
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2. Intermediate level. After a rough breakdown, each large interval is detailed into medium-duration 

components. This allows you to detect changes and trends that were not visible at a coarse level. For 

example, intervals can be divided into smaller subintervals of 1 second (for long intervals) or 100 ms (for 

shorter intervals). 

3. Subtle level. At this level of temporal segmentation, short-term pulses and signal variations are 

analyzed. Each average interval is detailed into small time segments, which allows you to detect rapid 

changes and impulses. For example, each average interval can be divided into subintervals of 10 ms or even 

less, depending on the nature of the signal. 

 

 
Fig. 1. Fragment of three-level multiscale decomposition 

 

The feasibility of using the method lies in the fact that the method allows cognitive radio systems to 

flexibly and adaptively analyze signals in the time domain, and this contributes to more efficient use of 

available resources and improves the quality of data transmission. Thanks to accurate analysis and adaptive 

segmentation, the method optimizes data transmission, increases the efficiency of resource use even in 

conditions of high noise and interference. 

Research analysis. 

The analysis of existing domestic and foreign research on this subject [1-14] proved that a significant 

part of the work devoted to signal processing and cognitive radio networks is aimed at developing methods 

of increasing noise immunity, optimizing spectral characteristics, and improving the accuracy of signals in 

difficult conditions [1]. In particular, researchers proposed different approaches to time-frequency analysis, 

the use of wavelet transformations, adaptive algorithms and decomposition methods [2]. 

However, most of the works [3,5-11, 13] do not substantiate the creation of effective ensembles of 

complex signals based on multilevel decomposition, which allows improving the characteristics of signals 

and adapting them to changing conditions. Also, the integration of multiscale decomposition methods with 

adaptive algorithms that could automatically adjust signal processing parameters in real time, ensuring high 

efficiency in intelligent dynamic radio environments, has not been sufficiently investigated. 

The purpose of the work. 

The purpose of this study is to develop a method for forming ensembles of complex signals based on 

multi-scale decomposition of time intervals with different levels of temporal detail. 

Presentation of the main material and substantiation of the obtained research results. 

The effectiveness of the method of forming ensembles of complex signals based on multi-scale 

decomposition of time intervals at different levels of time detail is evaluated by indicators. 

1. Accuracy of signal reproduction. The degree of deviation from the original signal is calculated, 

which is mathematically expressed as Mean Squared Error (MSE): 

 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑥(𝑡𝑖) − 𝑥(𝑡𝑖))

2𝑁
𝑖=1 ,                      (1) 
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where 𝑁 – is the number of time points; 

     𝑥(𝑡𝑖) – is the value of the original signal at the moment of time 𝑡𝑖; 
     𝑥(𝑡𝑖) – is the value of the reproduced signal at the moment of time 𝑡𝑖.  

 

2. Resolution is the ability to divide the initial signal 𝑥(𝑡) into time segments. The indicator shows 

the ability of the method to detect and distinguish different components of the signal at different levels of 

temporal detail, which allows for detailed analysis. Calculations are made using the formula:  

 

𝑥(𝑡) = ∑ (∑ 𝑐𝑘
(𝑛)
 𝜙𝑘
(𝑛)
(𝑡)𝐾

𝑘=1 )𝑁
𝑛=1 ,                   (2) 

 

where 𝑛 – detail level number; 

     𝐾 – number of components per level 𝑛 

     𝑐𝑘
(𝑛)

 – decomposition factor for component 𝑘 at level 𝑛; 

     𝜙𝑘
(𝑛)

 – basis function for component 𝑘 at level 𝑛.  

 

3. Calculation speed. It is estimated by the time T required for signal processing, taking into account 

the number of iterations 𝐼 and the computational complexity of the algorithm 𝑂(𝐼). It is calculated according 

to the formula: 

 

Т = ∑ O (i)𝐼
𝑖=1 ,                      (3) 

 

4. Resistance to noise. A metric that shows the ability to maintain accuracy in the presence of noise. 

It is measured by the signal-to-noise ratio parameter (SNR): 

 

𝑆𝑁𝑅 = 10 log10 (
∑ 𝑥(𝑡𝑖)

2𝑁
𝑖=1

∑ (𝑥(𝑡𝑖)− 𝑥̂(𝑡𝑖))
2𝑁

𝑖=1

),                             (4) 

 

5. Energy efficiency is estimated by the formula as the average value of the signal energy in time 

segments: 

 

𝐸 =
1

𝑁
∑ |𝑥(𝑡𝑖)|

2𝑁
𝑖=1 ,                                      (5) 

 

6. Correlation coefficient 𝜌. Determines the similarity between the average value of the original 𝑥̅ 

and the reproduced 𝑥̅ signal according to the formula: 

 

𝜌 =
∑ (𝑥(𝑡𝑖)−𝑥̅)(𝑥̂(𝑡𝑖)−𝑥̅̂)
𝑁
𝑖=1

√∑ (𝑥(𝑡𝑖)− 𝑥̅(𝑡𝑖))
2∑ (𝑥(𝑡𝑖)− 𝑥̂)

2𝑁
𝑖=1

𝑁
𝑖=1

,                 (6) 

 

7. The cross-correlation function. Allows you to assess how well the reproduced signal corresponds 

to the original one at different time shifts τ, the calculation formula: 

 

𝑅𝑥𝑖𝑥𝑗(𝜏) =
1

𝑁−𝜏
∑ 𝑥(𝑡𝑖) 𝑥(𝑡𝑖 + 𝜏)
𝑁−𝜏 
𝑖=1 ,                 (7) 

 

where 𝑅𝑥𝑖𝑥𝑗(𝜏) – shear cross-correlation function𝜏; 

     𝑥(𝑡𝑖) – the value of the original signal at the instant of time 𝑡𝑖; 
     𝑥(𝑡𝑖 + 𝜏) – the value of the reproduced signal at the offset 𝜏.  
 

The generalized system of conditions for all levels of temporal detail can be written in the form of a 

system of equations: 
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{
 
 

 
 𝑥(𝑡) = ∑ 𝑐𝑘

(1)
𝜙𝑘
(1)(𝑡) + 𝜖1(𝑡)

𝐾1
𝑘=1 , де 𝜖1(𝑡) → 0 при 𝐾1 →  ∞

𝜖1(𝑡) = ∑ 𝑐𝑘
(2)
𝜙𝑘
(2)(𝑡) + 𝜖2(𝑡), де 𝜖2(𝑡) → 0 при 𝐾2 →  ∞  

𝐾2
𝑘=1 

𝜖2(𝑡) = ∑ 𝑐𝑘
(3)𝜙𝑘

(3)(𝑡) + 𝜖3(𝑡), де 𝜖3(𝑡) → 0 при 𝐾3 →  ∞  
𝐾3
𝑘=1 

∆𝑡1 > ∆𝑡2 > ∆𝑡3 > 0, де ∆𝑡1 − 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 
𝑖𝑠 1,2,3 𝑙𝑒𝑣𝑒𝑙𝑠

,                 (8) 

 

where 𝜖𝑅(𝑡) – approximation errors at different levels. 

 

Taking into account indicators and conditions, an algorithm for practical implementation of the 

method of forming ensembles of complex signals based on multi-scale time decomposition was developed. 

Let's consider its stages in more detail (Fig 2). 

 

 
 

Fig. 2. Block diagram of the multiscale time decomposition algorithm 
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1 Stage. The beginning of the algorithm. Initialization of the input signal 𝑥(𝑡). The decomposition 

process is adapted to the specific properties of the input signals, which allows for maximum accuracy and 

efficiency of further processing. Decomposition (IMF) is carried out through an iterative process, which 

can be represented by the formula: 

 

𝑥(𝑡) = ∑ 𝐼𝑀𝐹𝑖  (𝑡)
𝑁
𝑖=1 + 𝑟𝑛(𝑡),     (9) 

 

where 𝐼𝑀𝐹𝑖 (𝑡) – internal modal functions; 𝑟𝑛(𝑡) – is the remainder. 

 

2 Stage. A rough level of decomposition. At this stage, the ensemble of signals is broken down into 

large time intervals for further analysis. The input signal can be given in the form of an equation: 

 

𝑥(𝑡) = ∑ (∑ 𝑐𝑘
(1)
 𝜙𝑘
(1)
(𝑡)𝐾

𝑘=1 + 𝜖1(𝑡))
𝐾1
𝑘=1 ,   (10) 

 

Time intervals are rearranged at each level of decomposition (coarse, medium, fine). The optimal 

permutations are chosen based on the assessment of the correlation properties of the signals. A pairwise 

calculation of the cross-correlation function (CCF) value is used to estimate the correlation properties. 

3 Stage. At this stage, the accuracy and compliance of the indicators with the specified (experimental) 

conditions of minimum similarity for the coarse level of decomposition are checked. If the accuracy and 

conditions are met, it is possible to proceed to the intermediate level of decomposition. If the condition of 

minimum similarity is not fulfilled, the procedure is repeated with the correction of the intervals that give 

the greatest number of violations. In this case, we return to stage 2 and repeat the iteration. The condition 

of minimal similarity can be determined by the formula: 

 

|𝑃𝑒𝑥𝑝 − 𝑃𝑐𝑎𝑙𝑐| ≤ 𝜖,     (11) 

 

where 𝑃𝑒𝑥𝑝, 𝑃𝑐𝑎𝑙𝑐 – experimental and calculated indicators, respectively;  𝜖 – permissible deviation. 

 

4 Stage. Average level of temporal decomposition. At this stage, the residual signal 𝜖1(𝑡) is split into 

average time intervals, which allows for a more detailed analysis of the signal structure. The process can 

be written mathematically as: 

 

𝜖1(𝑡) = ∑ 𝑐𝑘
(2)𝜙𝑘

(2)(𝑡) + 𝜖2(𝑡)
𝐾2
𝑘=1 .                (12) 

 

At the middle level of decomposition, a similar process takes place, as in stage 2, but with a more 

detailed breakdown of intervals. The evaluation indicators are also calculated, as for the rough level. This 

allows you to reveal additional features and characteristics of the signal that were not identified at the 

previous level of decomposition. At this stage, time intervals are also permuted with an assessment of the 

correlation properties of the signals and a pairwise calculation of the cross-correlation function (CCF). 

For more accurate control of approximation errors and correlation properties, adaptive optimization 

methods or genetic algorithms can be used at this stage. 

One of the most common adaptive optimization algorithms is the Least Mean Squares (LMS) 

algorithm. Initialize the weight vector 𝑤(0) for each step 𝑛: 

 

𝑦(𝑛) =  𝑤𝑇(𝑛)𝑥(𝑛)

𝑒(𝑛) = 𝑑(𝑛) − 𝑦(𝑛)

𝑤 (𝑛 + 1) = 𝑤 (𝑛) + 𝜇𝑒(𝑛)[𝑥(𝑛)

,   (13) 

 

where 𝑥(𝑛) – vector of input data;  

     𝑦(𝑛) – adaptive filter vector; 

     𝑑(𝑛), 𝑒(𝑛) – desired signal and error, respectively; 

     𝜇 – algorithm step (learning ratio). 
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5 Stage. Checking the accuracy and compliance of indicators with the given conditions of minimum 

similarity. Step 5 is similar to step 3, with the difference that verification and correction are performed for 

the medium decomposition level rather than the coarse one. If the condition specified by the experiment is 

not fulfilled, the intervals that give the greatest number of violations are corrected, and the iteration is 

repeated. 

6 Stage. Fine level of time decomposition. At this stage, the residual signal 𝜖2(𝑡) is split into small 

time intervals for an even more detailed analysis than was the case at previous levels. Mathematically, this 

can be written as: 

 

𝜖2(𝑡) = ∑ 𝑐𝑘
(3)
𝜙𝑘
(3)(𝑡) + 𝜖3(𝑡) 

𝐾3
𝑘=1     (14) 

 

Also, at a fine level, estimation indicators are calculated, time intervals are rearranged with a pairwise 

calculation of CCF, and the accuracy and compliance of the indicators obtained as a result of the 

calculations with the conditions of minimum similarity are checked. 

7 Stage. Formation of ensembles of complex signals. At this stage, the sequences formed as a result 

of the three-level decomposition are used to form ensembles of complex signals. Thanks to the three-level 

decomposition, each sequence contains detailed information about the original signal, which allows you to 

display its characteristics as accurately as possible. In general, the generated signal can be written in the 

form: 

 

𝑥(𝑡) = ∑ 𝑐𝑘
(1)
𝜙𝑘
(1)
(𝑡)

𝐾1
𝑘=1 +∑ 𝑐𝑘

(2)
𝜙𝑘
(2)(𝑡) + ∑ 𝑐𝑘

(3)
𝜙𝑘
(3)(𝑡) + 𝜖3(𝑡)

𝐾3
𝑘=1

𝐾2
𝑘=1 ,        (15) 

 

After combining all levels of decomposition, the consistency of the obtained sequences is checked 

by analyzing the correlation properties and checking for the presence of systematic errors, after which the 

final ensembles of complex signals are formed. Experimental studies were conducted to verify and validate 

the proposed method. The initial data of ensembles of complex signals used in the experiments are shown 

in table. 1. 

 

Table. 1 Output data for Ensemble 1 

Component  Amplitude (A)  Frequency (Fr) Characteristic 

Low frequency А1=1,0 Fr1=1 Hz Low-frequency sinusoidal 

signal 

Medium frequency А2=0,5 Fr2=5 Hz Medium frequency sinusoidal 

signal 

High frequency А3=0,2 – High frequency signal 

Impulses А4=0,8 Т=0,2; 0,5; 1с Pulses with different durations 

and breaks 

 

Table. 2 Output data for Ensemble 2 

Component  Amplitude (A)  Frequency (Fr) Characteristic 

Modulated signal А5=1,0 Fr3=2 Hz  

Fr4=0,5 Hz 

Low-frequency modulated 

sinusoidal signal with phase 

modulation 

High frequency noise А6=0,2 – High frequency noise 

Impulses А7=0,7 T=0,3;0,7;1.2 с Pulses with different durations 

and breaks 

 

At the first coarse level of multi-scale time decomposition, the initial division of signals into large 

time intervals takes place, each of which is analyzed separately. The optimal permutations of time intervals 

are chosen based on the evaluation of the correlation properties of the signals, which helps to increase 

immunity. The calculation of evaluation indicators according to the algorithm of the large-scale time 

decomposition method is presented in the table. 3-4. 

 

Table 3 – Calculation of indicators of the coarse level of decomposition for Ensemble 1 
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Segment MSE SNR (dB) Energy E  Correlation coefficient (ρ) Rхiхj 

1 0,1005 9,861 40,22 0,891 0,789 

2 0,1021 9,789 40,84 0,876 0,802 

3 0,0987 10,002 39,48 0,894 0,812 

4 0,1013 9,816 40,52 0,889 0,801 

5 0,1030 9,755 41,20 0,883 0,798 

 

Calculations show that Ensemble 1 shows a higher signal recovery accuracy compared to Ensemble 

2. For Ensemble 1, the mean value (MSE) is about 0,1011, which proves the low error rate after signal 

recovery; the signal-to-noise ratio (SNR) is 9,845 dB, which shows a sufficiently high signal-to-noise level; 

the E energy is 40.45, indicating signal stability, and the correlation coefficient (ρ) is 0.887, demonstrating 

high similarity between the original and reconstructed signals. 

Rхихj shows a value in the range of 0,789-0,812, which indicates an acceptable (conditionally, taking 

into account the given noises and disturbances, but far from orthogonality) mutual correlation between 

different segments. Such results testify to the effectiveness of the method in isolating and restoring the main 

components of the signal under the given influence of noise. 

 

Table 4 – Calculation of indicators of the coarse level of decomposition for Ensemble 2 

Segment MSE SNR (dB) Energy E  Correlation coefficient (ρ) Rхiхj 

1 0,1523 8,289 60,92 0,742 0,695 

2 0,1495 8,379 59,80 0,751 0,702 

3 0,1531 8,265 61,24 0,738 0,688 

4 0,1507 8,342 60,28 0,747 0,691 

5 0,1489 8,409 59,56 0,753 0,699 

 

For Ensemble 2, the MSE is 0,1509, indicating a higher error rate after signal recovery compared to 

Ensemble 1; SNR – 8,337 dB, which shows a lower signal-to-noise ratio; E is 60,36, indicating a higher 

energy component of the signal, and the correlation coefficient (ρ) is 0,746, showing a lower similarity 

between the original and reconstructed signals.  

Rхіхj shows values in the range of 0,688-0.702, which indicates a lower mutual correlation between 

different segments than was observed for Ensemble 1 (but also far from orthogonality) (Fig. 3). 

 

 
 

Ensemble 1 Ensemble 2 

 

Fig. 3 – Time decomposition of the first coarse level 
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Table 5 – Calculation of indicators of the average level of time decomposition 

Ensemble 1 

Segment MSE SNR (dB) Energy E  Correlation coefficient (ρ) Rхiхj 

1 0,0251 15,122 10,11 0,972 0,935 

2 0,0260 15,059 10,21 0,969 0,938 

3 0,0246 15,251 9,87 0,974 0,942 

4 0,0253 15,184 10,13 0,972 0,939 

5 0,0262 15,030 10,30 0,968 0,936 

6 0,0250 15,138 10,09 0,972 0,937 

7 0,0249 15,161 10,06 0,973 0,941 

8 0,0255 15,116 10,19 0,971 0,938 

9 0,0247 15,209 9,89 0,973 0,940 

10 0,0254 15,148 10,14 0,971 0,937 

Ensemble 2 

Segment MSE SNR (dB) Energy E  Correlation coefficient (ρ) Rхiхj 

1 0,0762 11,435 40,12 0,906 0,812 

2 0,0748 11,509 39,95 0,911 0,817 

3 0,0774 11,370 40,50 0,903 0,808 

4 0,0753 11,459 40,25 0,908 0,813 

5 0,0739 11,553 39,78 0,912 0,819 

6 0,0760 11,444 40,07 0,907 0,814 

7 0,0745 11,479 39,89 0,910 0,815 

8 0,0751 11,452 40,13 0,908 0,813 

9 0,0736 11,575 39,68 0,913 0,820 

10 0,0749 11,487 40,00 0,910 0,815 

 

At the intermediate level, for Ensemble 1, MSE decreased by 75,5%, and SNR increased by 53,4%. 

The energy E decreased to 10,14, indicating more precise extraction of the medium-frequency components 

of the signal but also a loss of some useful signal. The correlation coefficient (ρ) increased from 0,887 to 

0,971, indicating improved signal recovery accuracy but also an increase in mutual correlation, which is a 

drawback. For Ensemble 2, the average MSE decreased by 50,5%, and SNR increased by 38,2%. The 

correlation coefficient (ρ) rose to 0,910, indicating improved signal recovery accuracy, but it may also lead 

to signal overlap. The balance between the increase in ensemble signal volumes and mutual correlation is 

maintained. 

At the fine level of time decomposition, the signal is further divided into smaller segments (Table 6). 

 

Table 6 – Calculation of indicators for the fine level of time decomposition 

Ensemble 1 

Segment MSE SNR (dB)  E ρ Rхiхj 

1 0,0052 20,346 2,01 0,991 0,967 

2 0,0055 20,290 2,08 0,990 0,968 

3 0,0051 20,404 1,98 0,992 0,970 

4 0,0053 20,316 2,05 0,991 0,969 

5 0,0054 20,301 2,06 0,991 0,967 

... ... ... ... ... ... 

50 0,0053 20,312 2,04 0,991 0,968 

Ensemble 2 

Segment MSE SNR (dB) E ρ Rхiхj 

1 0,0212 13,056 8,52 0,952 0,870 

2 0,0209 13,110 8,48 0,953 0,872 

3 0,0214 13,025 8,57 0,951 0,868 

4 0,0211 13,073 8,50 0,953 0,871 
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5 0,0208 13,135 8,46 0,954 0,873 

... ... ... ... ... ... 

50 0,0210 13,097 8,49 0,953 0,870 

 

In fig. 4 shows the comparative characteristics of Ensembles 1 and 2. 

For Ensemble 1, the average MSE value at the coarse level was 0,1011. At the intermediate level, 

this value decreased to 0,0253, a 75,1% reduction. This indicates a significant reduction in signal 

reconstruction errors due to detailed analysis and extraction of the signal's mid-frequency components. At 

the fine level, the average MSE value decreased further to 0,0102, a 59,7% reduction compared to the 

intermediate level. Such optimization indicates even more accurate extraction of high-frequency 

components and further reduction of errors in signal reconstruction. The overall efficiency of the MSE 

metric from the coarse to the fine level was 89,9%, indicating the high effectiveness of the multiscale time 

decomposition method in reducing signal reconstruction errors, considering the features of Ensemble 1 

components, such as low-frequency and mid-frequency sinusoidal signals, high-frequency noise, and 

impulses. 

 

 
 

Fig. 4 – Optimization in the time domain on three levels 

 

At the coarse level, the average SNR value for Ensemble 1 was 9,845 dB. At the intermediate level, 

this value increased to 15,150 dB, a 53,9% improvement, indicating a significant reduction in noise and 

improvement in signal reproduction. At the fine level, SNR increased to 20,150 dB, providing an additional 

optimization of 33,0% compared to the intermediate level. The overall improvement in the SNR metric 

from the coarse to the fine level is 104,6%, confirming the method's effectiveness in enhancing the signal-

to-noise ratio. 

The signal energy (E) is an indicator of signal stability. For Ensemble 1, the average energy value at 

the coarse level was 40,45. At the intermediate level, this value decreased to 10,11, indicating more accurate 

extraction of the signal's mid-frequency components and a reduction in noise impact. At the fine level, the 



Науковий журнал "Комп’ютерно-інтегровані технології: освіта, наука, виробництво"   

Луцьк, 2024. Випуск № 56 

 

 

© Bershov V.S., Yakymchuk N.M. 

 334 

average energy value further decreased to 5,15, confirming the method's effectiveness in extracting high-

frequency components and reducing energy costs for signal processing. 

The cross-correlation function (CCF) allows evaluating how well the reconstructed signal matches 

the original one at different time shifts, which is important for assessing delays and consistency between 

signals. For Ensemble 1, the CCF value at the coarse level was 0,800, at the intermediate level, it increased 

to 0,938, and at the fine level, it reached 0,951. These are fairly high values of cross-correlation between 

signals, but as noted above, this can occur when the volume of signal ensembles increases. 

A comparison between Ensembles 1 and 2 shows that Ensemble 1's metrics were better optimized at 

each level of decomposition. This is due to the fact that Ensemble 1 contains less complex signals with a 

lower noise level. 

 

Conclusions and prospects for further research. 

This article proposed a three-level multiscale time decomposition method. The practical 

implementation of the algorithm for the proposed method substantiated the feasibility of its use for the 

analysis and processing of complex signals. Through detailed analysis and extraction of signal components 

at different levels of temporal detail, including coarse, medium, and fine levels, significant improvements 

in signal reconstruction accuracy were achieved. 

Ensembles of complex signals obtained by time decomposition are advisable to use in conditions of 

high immunity, a large number of subscribers in cognitive radio networks, as well as in conditions of a high 

level of noise and interference. The use of this method helps to increase the productivity of the 

telecommunications system due to the optimization of the signal processing process and the reduction of 

computing costs. 

Prospects for further research are the integration of the method with machine learning algorithms for 

automatic adaptation of decomposition parameters in real time, which will provide even greater efficiency 

and adaptability in the conditions of changing characteristics of the wireless cognitive telecommunication 

environment. 
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