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THE METHOD OF FORMING ENSEMBLES OF COMPLEX SIGNALS BASED ON MULTI-
SCALE DECOMPOSITION OF TIME INTERVALS AT DIFFERENT LEVELS OF DETAIL

Bershov V., Yakymchuk N. The method of forming ensembles of complex signals based on multi-scale
decomposition of time intervals at different levels of detail. This article addresses the challenges of forming signal ensembles
in dynamic cognitive radio environments, focusing on the limitations of traditional methods. The study proposes a new approach
based on multiscale time interval decomposition, which allows for the creation of signal ensembles at varying levels of temporal
detail. The key innovation of this method is its ability to improve signal reproduction accuracy, reduce inter-symbol and inter-
channel interference, and enhance the overall efficiency of data processing. The method's adaptability to changing environmental
conditions is also a core advantage, enabling better use of bandwidth and reduced transmission delay. Through the decomposition
of time intervals into coarse, intermediate, and fine levels, this method allows for the detailed analysis of short-term, medium-term,
and long-term signal components. Experimental results demonstrate the superiority of this approach in terms of signal recovery
accuracy, noise resilience, and processing speed. These findings highlight the potential for optimizing signal processing in cognitive
radio networks, particularly in environments with high levels of noise and interference. Future research aims to integrate machine
learning algorithms to further enhance adaptability in real-time scenarios.
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deviation (MSE), signal-to-noise ratio (SNR), signal processing

Bepmos B.C., SIkumuyk H.M. Metoa ¢popmyBaHHsi aHCaMOJIiB CKJIAHUX CUTHAJIB HA OCHOBi 6araromacmTadHol
JAeKOMIIO3U LI YacOBUX iHTepBaJIiB HAa Pi3HUX PiBHAX AeTandizanii. Y cTarTi po3risaaThes npodaeMu GopMyBaHHSI aHCAMOITiB
CUTHAJIIB CHCTEM Mepenadi y JUHAMIYHHX CepeOBHIIAX KOTHITHBHOTO palio, MPH IbOMY, yBara aKIeHTYEThCS HAa OOMEKEHHAX
TpaJULiHHUX METOJIB CHHTE3y aHCaMOJIiB CUTHAIIB. JlOCTiIKEeHHS MPOTIOHYE HOBHUH MiJXij, 3aCHOBaHUI Ha OaraToMacIuTaOHIH
JICKOMIIO3HUIIIT YaCOBMX IHTEPBAaTiB, IO O3BOJIIE CTBOPIOBATH aHCAMOJIi CHTHATIB Ha PI3HUX PIBHAX YacOBOI JeTaii3arlii.
KiIl04oBMM HOBOBBEIEHHSIM L[LOI'O METOJY € IiJIBHMIIEHHS TOYHOCTI BiJTBOPEHHS CHIHAIIB, 3MEHIICHHS MIKCHMBOJIBHHAX Ta
MiKKaHAJIBHHUX 3aBajl, & TAKOXK ITiIBUILCHHS 3arajbHOl e()EeKTHBHOCTI 00pOOKH HaHHX. BaXKIMBOIO MepeBaror 3anpornoHOBaHOTO
METOJy € HOro aJanTUBHICTH O 3MIHHHX YMOB HaBKOJIMIIIHBOTO CEPEAOBHINA, 110 JO3BOJISIE KPAIlle BUKOPUCTOBYBATH MPOITYCKHY
3/IaTHICTH Ta 3MEHIIYBATH 3aTPUMKH Niepeiadi. 3a JONOMOTOI0 BUKOHAHHS JEKOMITO3UIIil YaCOBUX iHTEpBaTiB Ha IPy0i, MPOMiXKHI
Ta TOYHI PiBHI, Il METOJ 1a€ 3MOTY JIECTAIbHO aHAIII3yBaTH KOPOTKOCTPOKOBI, CEPEIHBOCTPOKOBI Ta JOBFOCTPOKOBI KOMITOHEHTH
CHUTHANy B TEJCKOMYyHIKamilHUX TpakraX. OTpHMaHI eKCIEepHUMEHTANbHI Pe3ylbTaTH ACMOHCTPYIOTH INEpeBard MiAXOmy It
MOKPAIEHHS TOYHOCTI BiTHOBJIEHHS CUTHAITY, CTIHKOCTI 10 IIyMy Ta IMIBUAKOCTI 00poOku. OTprMaHi pe3yabTaTH MiIKPECTIOI0Th
MOTEHIiaN onTUMizalii 0OpoOKH CHrHAIIIB y KOTHITHBHHX paJlioMepekax, 0COOIMBO B YMOBaX BHCOKOTO PiBHS LIyMy Ta 3aBajl.
[Mopanbiri [oCTiKEHHS CIPSIMOBaHI Ha iHTETPaIlito alrTOPUTMIB MAIIIMHHOTO HABYAHHS IS MTiABUIIICHHS aIalTHBHOCTI B PEXKUMI
peanpHOro Jacy.

KmrouoBi cioBa: GararomacimitabHa JEKOMIIO3WILSI CUTHAIB, KOTHITHBHE paJiOCepelOBHINE, 4YacoBi iHTEpBaH,
aJIaNTHBHI allTOPUTMH, cepeHbokBanpaTnyne BinxuiaeHHs (MSE), cniBBinHomenHs curHan/mym (SNR), 06poOka curaamis.

Statement of a scientific problem.

Traditional methods of forming ensembles of complex signals in the modern dynamic cognitive radio
environment demonstrate insufficient flexibility and adaptability, which creates the need to develop new
methods that provide effective protection against inter-channel and inter-symbol interference, balance
between indicators of signal volumes and the function of mutual correlation, have a high level of bandwidth
indicators , low transmission delay and adaptability to changing environmental conditions.

One of these methods is the method of forming ensembles of complex signals based on multi-scale
decomposition of time intervals, which allows creating ensembles of signals at different levels of temporal
detail, increasing the volume of ensembles of complex signals and improving their characteristics, in
particular, increasing the efficiency of processing in the time domain. Multiscale Decomposition is a signal
analysis method that allows you to decompose a signal into components of different durations in order to
identify and analyze long-term, medium-term and short-term components of a signal (Fig. 1).

1. The coarse level is responsible for detecting the main long-term components of the signal. The
signal is divided into large time intervals that allow you to understand its general structure and trends. For
example, the division can be made into intervals of 10 seconds if the signal is long, or into intervals of 1
second for shorter signals.

© Bershov V.S., Yakymchuk N.M.
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2. Intermediate level. After a rough breakdown, each large interval is detailed into medium-duration
components. This allows you to detect changes and trends that were not visible at a coarse level. For
example, intervals can be divided into smaller subintervals of 1 second (for long intervals) or 100 ms (for
shorter intervals).

3. Subtle level. At this level of temporal segmentation, short-term pulses and signal variations are
analyzed. Each average interval is detailed into small time segments, which allows you to detect rapid
changes and impulses. For example, each average interval can be divided into subintervals of 10 ms or even
less, depending on the nature of the signal.

—— Original Signal

Level 1 (Coarse)
— Level 2 (Intermediate)
— Level 3 (Fine)

0.8

1.0

Fig. 1. Fragment of three-level multiscale decomposition

The feasibility of using the method lies in the fact that the method allows cognitive radio systems to
flexibly and adaptively analyze signals in the time domain, and this contributes to more efficient use of
available resources and improves the quality of data transmission. Thanks to accurate analysis and adaptive
segmentation, the method optimizes data transmission, increases the efficiency of resource use even in
conditions of high noise and interference.

Research analysis.

The analysis of existing domestic and foreign research on this subject [1-14] proved that a significant
part of the work devoted to signal processing and cognitive radio networks is aimed at developing methods
of increasing noise immunity, optimizing spectral characteristics, and improving the accuracy of signals in
difficult conditions [1]. In particular, researchers proposed different approaches to time-frequency analysis,
the use of wavelet transformations, adaptive algorithms and decomposition methods [2].

However, most of the works [3,5-11, 13] do not substantiate the creation of effective ensembles of
complex signals based on multilevel decomposition, which allows improving the characteristics of signals
and adapting them to changing conditions. Also, the integration of multiscale decomposition methods with
adaptive algorithms that could automatically adjust signal processing parameters in real time, ensuring high
efficiency in intelligent dynamic radio environments, has not been sufficiently investigated.

The purpose of the work.

The purpose of this study is to develop a method for forming ensembles of complex signals based on
multi-scale decomposition of time intervals with different levels of temporal detail.

Presentation of the main material and substantiation of the obtained research results.

The effectiveness of the method of forming ensembles of complex signals based on multi-scale
decomposition of time intervals at different levels of time detail is evaluated by indicators.

1. Accuracy of signal reproduction. The degree of deviation from the original signal is calculated,
which is mathematically expressed as Mean Squared Error (MSE):

MSE = 3 EIL, (x(8) = £(6))?, @)
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where N — is the number of time points;
x(t;) — is the value of the original signal at the moment of time ¢;;
X(t;) — is the value of the reproduced signal at the moment of time ¢;.

2. Resolution is the ability to divide the initial signal x(t) into time segments. The indicator shows
the ability of the method to detect and distinguish different components of the signal at different levels of
temporal detail, which allows for detailed analysis. Calculations are made using the formula:

x(6) = -1 (EKo o ¢ (), )

where n — detail level number;
K — number of components per level n

c,E") — decomposition factor for component k at level n;
,E”) — basis function for component k at level n.

3. Calculation speed. It is estimated by the time T required for signal processing, taking into account
the number of iterations I and the computational complexity of the algorithm O(I). It is calculated according
to the formula:

T=3/,00), 3)

4. Resistance to noise. A metric that shows the ability to maintain accuracy in the presence of noise.
It is measured by the signal-to-noise ratio parameter (SNR):

_ B x(t)?
SNR = 10logio (Zﬁii(x(tz)—ﬂ?(tz)V)' )

5. Energy efficiency is estimated by the formula as the average value of the signal energy in time
segments:

E =T lx()I?, 5)

6. Correlation coefficient p. Determines the similarity between the average value of the original X
and the reproduced X signal according to the formula:

N N—%)(2(t)-%
p= S W) DEDE) (6)
[P et 2@ Tl - 27

7. The cross-correlation function. Allows you to assess how well the reproduced signal corresponds
to the original one at different time shifts z, the calculation formula:

Ry (0) = 7= BT x(t) £(t; + ), (7)

where Ryx; (7) — shear cross-correlation functiont;

x(t;) — the value of the original signal at the instant of time ¢;;
X(t; + 1) —the value of the reproduced signal at the offset 7.

The generalized system of conditions for all levels of temporal detail can be written in the form of a
system of equations:
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x(®) = $K WD) + el(t), ge €1(t) » 0npn Ky - oo
1) = Tz, PP (O + €2(0),ne €(t) > Ompu K, > o

e2(t) = T2, ¢ PP (O + (0, me (©) > OmpnK; > o
Aty > At, > Atz > 0, ge Aty — the length of the intervals
is 1,2,3 levels

where eR(t) — approximation errors at different levels.

(8)

Taking into account indicators and conditions, an algorithm for practical implementation of the
method of forming ensembles of complex signals based on multi-scale time decomposition was developed.

Let's consider its stages in more detail (Fig 2).

Initialization of the input
signal
x(e) = LIz, IMF (1) + 1y (1)

Breakdown into large time intervals.
Permutation. Calculation: MSE, SNR,

E. Ry

1 Level

Rough
decompaosition

Checking conditions

[Poxp = Preaie] < €

Yes

Selection of time intervals
with the best indicators and
level CCF

Breakdown into averages
time intervals

Rearrangement of time intervals.
Calculation: MSE, SNR, E, R,

2 Level

Average level of
decomposition

Checking conditions HO

[Pexp = Peare] = €

es

( Selection of time intervals
with the best indicators and
L level CCF

| Pozburra Ha ApiGHi yacosi
] iHTEpEanK

Rearrangement of time intervals.
Calculation: MSE, SNR, E, R,

3 Level

Subtle level of
decomposition

Fig. 2. Block diagram of the multiscale time decomposition algorithm
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1 Stage. The beginning of the algorithm. Initialization of the input signal x(t). The decomposition
process is adapted to the specific properties of the input signals, which allows for maximum accuracy and
efficiency of further processing. Decomposition (IMF) is carried out through an iterative process, which
can be represented by the formula:

x(t) = T, IMF; (t) + 1, (D), 9)
where IMF; (t) — internal modal functions; n,(t) — is the remainder.

2 Stage. A rough level of decomposition. At this stage, the ensemble of signals is broken down into
large time intervals for further analysis. The input signal can be given in the form of an equation:

x(6) = ZhL, (Thoa o 90 0 + €1 @), (10)

Time intervals are rearranged at each level of decomposition (coarse, medium, fine). The optimal
permutations are chosen based on the assessment of the correlation properties of the signals. A pairwise
calculation of the cross-correlation function (CCF) value is used to estimate the correlation properties.

3 Stage. At this stage, the accuracy and compliance of the indicators with the specified (experimental)
conditions of minimum similarity for the coarse level of decomposition are checked. If the accuracy and
conditions are met, it is possible to proceed to the intermediate level of decomposition. If the condition of
minimum similarity is not fulfilled, the procedure is repeated with the correction of the intervals that give
the greatest number of violations. In this case, we return to stage 2 and repeat the iteration. The condition
of minimal similarity can be determined by the formula:

|Pexp - Pcalcl <€, (11)
where P, Pcqic — €xperimental and calculated indicators, respectively; e — permissible deviation.

4 Stage. Average level of temporal decomposition. At this stage, the residual signal e*(t) is split into
average time intervals, which allows for a more detailed analysis of the signal structure. The process can
be written mathematically as:

1) =T, c PP () + €2(1). (12)

At the middle level of decomposition, a similar process takes place, as in stage 2, but with a more
detailed breakdown of intervals. The evaluation indicators are also calculated, as for the rough level. This
allows you to reveal additional features and characteristics of the signal that were not identified at the
previous level of decomposition. At this stage, time intervals are also permuted with an assessment of the
correlation properties of the signals and a pairwise calculation of the cross-correlation function (CCF).

For more accurate control of approximation errors and correlation properties, adaptive optimization
methods or genetic algorithms can be used at this stage.

One of the most common adaptive optimization algorithms is the Least Mean Squares (LMS)
algorithm. Initialize the weight vector w(0) for each step n:

ym) = w'(m)x(n)
e(n) =d(n) —yn) , (13)
wn+1) =wn)+pen)[x(n)

where x(n) — vector of input data;
y(n) — adaptive filter vector;
d(n),e(n) — desired signal and error, respectively;
u — algorithm step (learning ratio).

© Bershov V.S., Yakymchuk N.M.
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5 Stage. Checking the accuracy and compliance of indicators with the given conditions of minimum
similarity. Step 5 is similar to step 3, with the difference that verification and correction are performed for
the medium decomposition level rather than the coarse one. If the condition specified by the experiment is
not fulfilled, the intervals that give the greatest number of violations are corrected, and the iteration is
repeated.

6 Stage. Fine level of time decomposition. At this stage, the residual signal €2 (t) is split into small
time intervals for an even more detailed analysis than was the case at previous levels. Mathematically, this
can be written as:

e2(t) =32, PP () + (1) (14)

Also, at a fine level, estimation indicators are calculated, time intervals are rearranged with a pairwise
calculation of CCF, and the accuracy and compliance of the indicators obtained as a result of the
calculations with the conditions of minimum similarity are checked.

7 Stage. Formation of ensembles of complex signals. At this stage, the sequences formed as a result
of the three-level decomposition are used to form ensembles of complex signals. Thanks to the three-level
decomposition, each sequence contains detailed information about the original signal, which allows you to
display its characteristics as accurately as possible. In general, the generated signal can be written in the
form:

x(@®) =38 PP @) + 3852 PP (6) + 352 PP ) +e3(),  (15)

After combining all levels of decomposition, the consistency of the obtained sequences is checked
by analyzing the correlation properties and checking for the presence of systematic errors, after which the
final ensembles of complex signals are formed. Experimental studies were conducted to verify and validate
the proposed method. The initial data of ensembles of complex signals used in the experiments are shown
in table. 1.

Table. 1 Output data for Ensemble 1

330

Component Amplitude (A) | Frequency (Fr) Characteristic

Low frequency A=1,0 Fri=1Hz Low-frequency sinusoidal
signal

Medium frequency A»=0,5 Fr=5Hz Medium frequency sinusoidal
signal

High frequency A3=0,2 — High frequency signal

Impulses A4=0,8 T=0,2; 0,5; 1c Pulses with different durations
and breaks

Table. 2 Output data for Ensemble 2

Component Amplitude (A) | Frequency (Fr) Characteristic
Modulated signal As=1,0 Frs=2 Hz Low-frequency modulated
Frs=0,5 Hz sinusoidal signal with phase
modulation
High frequency noise As=0,2 - High frequency noise
Impulses A7=0,7 T=0,3;0,7;1.2 ¢ Pulses with different durations
and breaks

At the first coarse level of multi-scale time decomposition, the initial division of signals into large
time intervals takes place, each of which is analyzed separately. The optimal permutations of time intervals
are chosen based on the evaluation of the correlation properties of the signals, which helps to increase
immunity. The calculation of evaluation indicators according to the algorithm of the large-scale time
decomposition method is presented in the table. 3-4.

Table 3 — Calculation of indicators of the coarse level of decomposition for Ensemble 1

© Bershov V.S., Yakymchuk N.M.
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Segment MSE SNR (dB) Energy E Correlation coefficient (p) | Ruixj
1 0,1005 9,861 40,22 0,891 0,789
2 0,1021 9,789 40,84 0,876 0,802
3 0,0987 10,002 39,48 0,894 0,812
4 0,1013 9,816 40,52 0,889 0,801
5 0,1030 9,755 41,20 0,883 0,798

Calculations show that Ensemble 1 shows a higher signal recovery accuracy compared to Ensemble

2. For Ensemble 1, the mean value (MSE) is about 0,1011, which proves the low error rate after signal
recovery; the signal-to-noise ratio (SNR) is 9,845 dB, which shows a sufficiently high signal-to-noise level,
the E energy is 40.45, indicating signal stability, and the correlation coefficient (p) is 0.887, demonstrating
high similarity between the original and reconstructed signals.

Rxwuxj shows a value in the range of 0,789-0,812, which indicates an acceptable (conditionally, taking
into account the given noises and disturbances, but far from orthogonality) mutual correlation between
different segments. Such results testify to the effectiveness of the method in isolating and restoring the main
components of the signal under the given influence of noise.

Table 4 — Calculation of indicators of the coarse level of decomposition for Ensemble 2

Segment MSE SNR (dB) Energy E | Correlation coefficient (p) | Ryixj

1 0,1523 8,289 60,92 0,742 0,695
2 0,1495 8,379 59,80 0,751 0,702
3 0,1531 8,265 61,24 0,738 0,688
4 0,1507 8,342 60,28 0,747 0,691
5 0,1489 8,409 59,56 0,753 0,699

For Ensemble 2, the MSE is 0,1509, indicating a higher error rate after signal recovery compared to

Ensemble 1; SNR - 8,337 dB, which shows a lower signal-to-noise ratio; E is 60,36, indicating a higher
energy component of the signal, and the correlation coefficient (p) is 0,746, showing a lower similarity
between the original and reconstructed signals.

Rxixj shows values in the range of 0,688-0.702, which indicates a lower mutual correlation between
different segments than was observed for Ensemble 1 (but also far from orthogonality) (Fig. 3).

——- oOriginal Ensemble 1
—— Reconstructed Ensemble 1 (Rough Level)

——- Original Ensemble 2
—— Reconstructed Ensemble 2 (Rough Level)

10 Original

Ensemble 1

SxEmECnT— —
Se————

——p T T TN

———— T

10

Ensemble 2

Fig. 3 — Time decomposition of the first coarse level
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Table 5 — Calculation of indicators of the average level of time decomposition

Ensemble 1

Segment MSE SNR (dB) Energy E Correlation coefficient (p) | Ruixj

1 0,0251 15,122 10,11 0,972 0,935
2 0,0260 15,059 10,21 0,969 0,938
3 0,0246 15,251 9,87 0,974 0,942
4 0,0253 15,184 10,13 0,972 0,939
5 0,0262 15,030 10,30 0,968 0,936
6 0,0250 15,138 10,09 0,972 0,937
7 0,0249 15,161 10,06 0,973 0,941
8 0,0255 15,116 10,19 0,971 0,938
9 0,0247 15,209 9,89 0,973 0,940
10 0,0254 15,148 10,14 0,971 0,937

Ensemble 2

Segment MSE SNR (dB) Energy E Correlation coefficient (p) | Ruyixj

1 0,0762 11,435 40,12 0,906 0,812
2 0,0748 11,509 39,95 0,911 0,817
3 0,0774 11,370 40,50 0,903 0,808
4 0,0753 11,459 40,25 0,908 0,813
5 0,0739 11,553 39,78 0,912 0,819
6 0,0760 11,444 40,07 0,907 0,814
7 0,0745 11,479 39,89 0,910 0,815
8 0,0751 11,452 40,13 0,908 0,813
9 0,0736 11,575 39,68 0,913 0,820
10 0,0749 11,487 40,00 0,910 0,815

At the intermediate level, for Ensemble 1, MSE decreased by 75,5%, and SNR increased by 53,4%.
The energy E decreased to 10,14, indicating more precise extraction of the medium-frequency components
of the signal but also a loss of some useful signal. The correlation coefficient (p) increased from 0,887 to
0,971, indicating improved signal recovery accuracy but also an increase in mutual correlation, which is a
drawback. For Ensemble 2, the average MSE decreased by 50,5%, and SNR increased by 38,2%. The
correlation coefficient (p) rose to 0,910, indicating improved signal recovery accuracy, but it may also lead
to signal overlap. The balance between the increase in ensemble signal volumes and mutual correlation is

maintained.

At the fine level of time decomposition, the signal is further divided into smaller segments (Table 6).

Table 6 — Calculation of indicators for the fine level of time decomposition

Ensemble 1
Segment MSE SNR (dB) E p Ruxixj
1 0,0052 20,346 2,01 0,991 0,967
2 0,0055 20,290 2,08 0,990 0,968
3 0,0051 20,404 1,98 0,992 0,970
4 0,0053 20,316 2,05 0,991 0,969
5 0,0054 20,301 2,06 0,991 0,967
50 0,0053 20,312 2,04 0,991 0,968

Ensemble 2
Segment MSE SNR (dB) E p Rixixj
1 0,0212 13,056 8,52 0,952 0,870
2 0,0209 13,110 8,48 0,953 0,872
3 0,0214 13,025 8,57 0,951 0,868
4 0,0211 13,073 8,50 0,953 0,871
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5 0,0208 13,135 8,46 0,954 0,873
50 0,0210 13,097 8,49 0,953 0,870

In fig. 4 shows the comparative characteristics of Ensembles 1 and 2.

For Ensemble 1, the average MSE value at the coarse level was 0,1011. At the intermediate level,
this value decreased to 0,0253, a 75,1% reduction. This indicates a significant reduction in signal
reconstruction errors due to detailed analysis and extraction of the signal's mid-frequency components. At
the fine level, the average MSE value decreased further to 0,0102, a 59,7% reduction compared to the
intermediate level. Such optimization indicates even more accurate extraction of high-frequency
components and further reduction of errors in signal reconstruction. The overall efficiency of the MSE
metric from the coarse to the fine level was 89,9%, indicating the high effectiveness of the multiscale time
decomposition method in reducing signal reconstruction errors, considering the features of Ensemble 1
components, such as low-frequency and mid-frequency sinusoidal signals, high-frequency noise, and
impulses.

Ensemble 1 - Original Signal Ensemble 2 - Original Signal

—— oOriginal Signal

-

o
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Fig. 4 — Optimization in the time domain on three levels

At the coarse level, the average SNR value for Ensemble 1 was 9,845 dB. At the intermediate level,
this value increased to 15,150 dB, a 53,9% improvement, indicating a significant reduction in noise and
improvement in signal reproduction. At the fine level, SNR increased to 20,150 dB, providing an additional
optimization of 33,0% compared to the intermediate level. The overall improvement in the SNR metric
from the coarse to the fine level is 104,6%, confirming the method's effectiveness in enhancing the signal-
to-noise ratio.

The signal energy (E) is an indicator of signal stability. For Ensemble 1, the average energy value at
the coarse level was 40,45. At the intermediate level, this value decreased to 10,11, indicating more accurate
extraction of the signal's mid-frequency components and a reduction in noise impact. At the fine level, the
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average energy value further decreased to 5,15, confirming the method's effectiveness in extracting high-
frequency components and reducing energy costs for signal processing.

The cross-correlation function (CCF) allows evaluating how well the reconstructed signal matches
the original one at different time shifts, which is important for assessing delays and consistency between
signals. For Ensemble 1, the CCF value at the coarse level was 0,800, at the intermediate level, it increased
to 0,938, and at the fine level, it reached 0,951. These are fairly high values of cross-correlation between
signals, but as noted above, this can occur when the volume of signal ensembles increases.

A comparison between Ensembles 1 and 2 shows that Ensemble 1's metrics were better optimized at
each level of decomposition. This is due to the fact that Ensemble 1 contains less complex signals with a
lower noise level.

Conclusions and prospects for further research.

This article proposed a three-level multiscale time decomposition method. The practical
implementation of the algorithm for the proposed method substantiated the feasibility of its use for the
analysis and processing of complex signals. Through detailed analysis and extraction of signal components
at different levels of temporal detail, including coarse, medium, and fine levels, significant improvements
in signal reconstruction accuracy were achieved.

Ensembles of complex signals obtained by time decomposition are advisable to use in conditions of
high immunity, a large number of subscribers in cognitive radio networks, as well as in conditions of a high
level of noise and interference. The use of this method helps to increase the productivity of the
telecommunications system due to the optimization of the signal processing process and the reduction of
computing costs.

Prospects for further research are the integration of the method with machine learning algorithms for
automatic adaptation of decomposition parameters in real time, which will provide even greater efficiency
and adaptability in the conditions of changing characteristics of the wireless cognitive telecommunication
environment.
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