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IMPLEMENTATION OF MACHINE LEARNING TO INCREASE THE ACCURACY OF
FORECASTING THE OPERATING MODES OF DEEP-SEA PUMPING STATIONS

Turchyn O. Implementation of Machine Learning to Increase the Accuracy of Forecasting the Operating Modes
of Deep-Sea Pumping Stations. This study endeavors at implementing ML algorithms that are capable of refining the forecast of
operating modes of deep-water pumping stations which offshore processes draw their energy from. The classic forecasting methods
often do not take into account the complexity of the underwater environment, and so they tend to show suboptimal efficiency,
higher maintenance costs and of course wastage of resources. For this study, different ML algorithms including neural networks,
support vector machines, random forests, gradient boosting, and linear regression are employed to evaluate how they can imagine
operating circumstances under conditions of changes. The rental housing datasets, which contain historical operational data,
environmental factors as well as system parameters, are applied to training and validation processes. Data illustrates enhanced
capabilities of Al systems with leading candidates being neural network, random forests, and gradient boosting in demonstrating
the exact relationships in the sample. The models deliver better performance than the traditional techniques, thereby allowing to
assess in-depth the interaction scheme between environmental variables and working modes. These pivotal variables, depth,
temperature and pump characteristics are among those that got scrutinized; therefore, insights as to what ought to be embraced for
an efficient prediction. Comparative analyses bring forth the tradeoff between the model complexity and interoperability, which
state that the algorithm chosen toward application must be thought out very wisely. Ensemble models, which contain a spectrum
of different models with each one strong with its own abilities, are seen to be among the balanced way of making precise and useful
forecasts. The deep sea water pumping stations developed model based on ML(ML) represents an example in practice that sets the
framework for increased operational efficiency, reduced maintenance costs, and optimized resource utilization. The findings of this
research uncover crucial aspect for engineers, researchers, as well as industry, experts who are prospects of deep-water resource
extraction sector. This itself implies a transformation approach toward addressing the problems encountered in dynamic deep-sea
environments. With developments in the area of ML, there is a lot of scope for future research ventures to explore new algorithms
and real-time techniques which will help to further improve the forecasting capabilities and will certainly result in viable offshore
operations. Thus, it can be said that the future of sustainable and resilient offshore operations can to some extent be credited to ML.

Keywords: deep water pumping, Machine learning, Neural network, comparison, prediction.

Typuun O.b. BipoBagkeHHSI MALIMHHOTO HABYAHHSA VISl MiIBUIIEHHS TOYHOCTI MPOrHO3YBAHHS Pe;KUMIB PoGOTH
rJIM00KOBOHMX HACOCHUX CTAHMIN. AHoTaris — e TOCTiKEHHs CPAMOBaHe Ha peati3allilo alrOPUTMiB MAIMHHOTO HABYAHHS, AKi 31aTHI
BIIOCKOHAJIMTH POTHO3 PEXKXHUMIB pOOOTH IITMOOKOBOJHIX HACOCHUX CTAHIIH, Bijl SKUX OTPHMYIOTH eHeprito odiopHi onepanii. Knacwani meronn
IIPOTHO3YBAHHS 9acTO HE BPAXOBYIOTh CKJIA[HICTb I1iIBOJJHOTO CEPEIOBHINA, i TOMY BOHH, SIK IIPAaBMIIO, TIOKa3ylOTh HEONTHMANbHY €)eKTHBHICTS,
BHILI BATPATH HA 00CITyrOBYBaHHS 1, 3BUYaiiHO, MADHOTPATCTBO peCypciB. Y IbOMY AOCIIPKEHHI BUKOPUCTOBYIOTHCS Pi3Hi aITOPUTMHU MAIIUHHOTO
HaBUYaHHS, BKIIIOYAIOYM HEHPOHHI Mepexi, MalllMHH ONMOPHUX BEKTODIB, BUIAIKOBI JICH, TpaJlieHTHE IIiICWIICHHS Ta JIiHIHHY perpeciro, mo6
OIIIHHTH, SIK BOHM MOXYTb YSBHTH po00di 00CTaBHHH B yMOBaX 3MiH. JI11 HABUaHHS Ta BaJifalii 3aCTOCOBYIOThCSI HAOOPH TaHUX ITPO OPEHIOBAHE
JKHUTIIO, SIKi MICTATH ICTOPUYHI omnepauiiiHi JaHi, (aKTOPH HABKOJMUIIHBOTO CEPEOBHUINA, a TAaKOX MapaMeTpy cCUCTeMH. JlaHi 1IHOCTPYIOTh
PO3MIMPEHi MOXKIIMBOCTI CHCTEM IITYYHOTO IHTENEKTY, Cepesl AKX MPOBiTHUMH KaHIUIaTaMH € HEHPOHHI MepEesKi, BUTIAJIKOBI JIiCH Ta TpaJlieHTHE
MICHIICHHS 171 AEMOHCTpamlil TOYHHX B3a€MO3B'A3KIB y BHOIpIi. Mopeni NeMOHCTpYIOTh Kpalli pe3ysibTaTH, HDK TpaJuLiiHI METOmH, IO
JIO3BOJISIE MTOTTIMOJICHO OIIIHUTH CXEMY B3a€MOIIT Mk 3SMIHHUMH HAaBKOJIMIITHBOTO CEPEOBHIIA Ta peKUMaMu poboTH. L1i kirto4oBi 3MiHHI, rIHOHHa,
TEMIIepaTypa i XapaKTepHCTHKH HACOCIB, € OJHUMH 3 THX, II0 OyJIM PeTebHO BUBUYEHI; OTXKE, 3'BIIIOCS PO3YMiHHS TOTO, IO Ma€ OyTH BPaXOBaHO
JuIst e(peKTHBHOTO TPOrHO3yBaHHA. [1OpIBHANBHMI aHAN3 Jae 3MOTY 3HAMTH KOMIIPOMIC MiXK CKJIQJIHICTIO MOJIENI Ta iHTeponepabebHICTIo, M0
CBIZTYUTH NPO T€, 110 AITOPUTM, OOpaHHH JUIsl 3aCTOCYBaHHsI, Mae OyTH Ayxe 1o0pe npogyMaHuil. AHCaMOJIeBl MOJIEII, SIKi MICTSTh CHEKTpP Pi3HUX
Mogenelt, KoKHa 3 SIKUX Ma€ CBOI BIIACHI MOXKJIMBOCTI, BBXKAIOTHCSI OJHUM 13 30QJIaHCOBAHHX CIIOCOOIB CTBOPEHHS TOYHUX 1 KOPHCHUX MPOTHO3IB.
Po3spobnera Mojiens TIIMOO0KOBOAHNX HACOCHUX CTAHINH Ha OCHOBI MammHHOTO Ha4aHHA (MH) € mpukiasoM MpakTHYHOTO 3aCTOCYBAHHS, IO
CTBOPIOE OCHOBY [UTSI TiIBUILCHHS OMEPAIliiHOl eeKTUBHOCTI, 3HIKEHHSI BUTPAT Ha OOCIYTOBYBAaHHS Ta ONTHMI3allil BAKOPUCTAHHS PECYPCIB.
Pe3ynbTaTé IEOTO TOCTI[PKEHHS PO3KPHBAIOTH BaYKITUBHI aCIIeKT ISt iH)KEHEPiB, JOCITHHKIB, a TAKOXK (paxiBLiB IPOMHUCIOBOCTI, SIKi 3aMAIOTHCS
NepcHeKTHBAaMHU TIIHOOKOBOJHOTO BHIOOYTKY pecypciB. Lle nmepenbadae TpaHchOpMaIiiHUi MiAXig 0 BUPIMICHHS NPo0JieM, 110 BUHUKAIOTH Y
JIMHAMIYHOMY TJIMOOKOBOJHOMY CepeloBHIi. 3 po3BUTKOM y chepi MH BiAKpHBaIOTHCS MIMPOKI MOXIMBOCTI IJISI MAHOYTHIX JOCITIIHUIBKUX
MPOEKTIB 3 BHUBUCHHS HOBHX AITOPUTMIB i METOIiB pOOOTH B pealbHOMY 4Yaci, sIKi JOMOMOXYTh Ie OiLTbINe MOMIMIIATH MOXINBOCTI
TIPOTHO3YBaHHS i, 0€3yMOBHO, NpPUBEIYTh 10 XKHTTE3AATHAX MOPCHKHX omepamii. TakuM 4HHOM, MOXHA CKa3aTH, IO MaWOyTHe CTIiHKMX i
HaAiHUX O(QIIOPHUX ONEpaLiif HEBHOK MipOO MOB'S3aHE 3 BiIMUBAHHIM TPOILEH.

Kuro4oBi ciroBa: rimmOOKOBOJHI HACOCH, MAIIMHHE HABYAHHSI, HEHPOHHA Mepeska, MOPiBHAHHS, IPOTHO3YBAHHS.

Introduction. Treating water (sometimes multiple times) and pumping it across great distances are very
energy-hungry activities. About 30% perusal of the municipal government expenditures deals with water for drinking
and waste disposal. With the largest remaining share of electricity use (more than 10%) are the moving, pumping, and
treating of water, use of which is 4% only for the latter (i.e., water conveyance). As the water sector makes growing
demands to electricity over time, power intake prediction plays a paramount role in electricity planning for the
institutional infrastructure [1]. Besides the municipal water providers and electric grid operators, avoided expenses
incurred by either the rate spikes or inconvenience caused by the blackouts that are a result of the sudden surges in
energy demand, the smart grid power network benefits a lot from the well-predicted energy use. However, the accurate
prediction simplifies energy consumption which in turn reduces under - or an over-estimation [2]. A wrong prediction
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about energy use increases the financial impact on electricity supply, so the prices for electricity may grow high if the
infrastructure is set up proportionally [3]. With energy consumption being taken for granted the supply of electricity
may fall short, power systems may collapse and water supply systems would be disrupted. Thus, on-target energy
consumption prediction is a necessary beginning if we hope to understand the energy supply and demand patterns [4].

Machine learning (ML) which is a particular domain of artificial intelligence, helps to train the models by
data utilized in the process, so they can be used at specific problems and new information extraction from big data as
well [5, 6]. In addition, the computer programming languages and the underlying algorithms have become more
adaptive and mature, which have made machine learning more applicable in the technologic applications. The last
decade had seen remarkable progress in developing computer technologies which is now increasingly applied in our
research for groundwater prediction [7] and the assessment and monitoring of groundwater [8]. Consequentially, an
agent of machine learning has emerged as efficient systems for acquiring output(s) from the implied information in
groundwater. The role of surface water is dominant in the provision of various socioeconomic benefits. The coefficient
for the regression analysis has been measured extensively and the data have been collected. Therefore, artificial
intelligence can be used to generate reliable prediction of coefficient. Using ML approaches, it is possible to get to
the data point and this is used in forming an expression that relates the coefficient and influencing factors. In that case,
it should be noted that ML has not yet been employed to predict the value of electricity which is transferred as a power
unit into transported water.

There are several modeling methodologies available for predicting water-related energy usage. We undertake
a literature study to determine the developing technique to predicting water sector energy use. Machine learning
models have also been shown to be beneficial in modeling the energy consumption of a wastewater treatment plant
[9-12] and a distribution system [13]. Several research has used machine learning algorithms to estimate water-related
energy demand, however, they have only forecasted the energy usage of a single water plant. Previous research has
not examined and compared the model's performance for the full transfer of the water system and its components. ML
algorithms might have fared well in estimating the consumption of energy for a certain water plant. However, nothing
is known about estimating energy use for a collection of water facilities using machine learning. Inter-basin transfers
of water projects such as the State Water Project and the Mokelumne River Aqueduct might involve energy forecasting
models, but they are unknown or not publicly available.

The correct operation of water delivery systems is closely related to the population’s ability to obtain water.
Water and energy are two of the most important resources, and their combined management may yield major economic
and environmental advantages in both sectors. In this regard, the United Nations Sustainable Development Goals
(SDGs), particularly Goals 6 and 11, have identified the issue of ensuring the availability and long-term sustainability
of water for all, addressing specific actions that guarantee the availability of clean water and focusing on resource
utilization improvement [14].

Problem statement. Deep-sea pumping stations are vital parts of marine resource extraction operations,
acting as important gear in the effective recovery of resources from the ocean floor. However, because the undersea
environment is complicated and dynamic, accurately anticipating modes of operation in these deep-sea pumping
centers is a substantial difficulty. Previous prediction methods often ignored the interaction between work,
environment, and physical activity, resulting in decreased performance, increased maintenance costs, and material
waste [15].

The ability of deep water stations to anticipate and adapt to changes in operations is limited by current forecast
accuracy, resulting in positive and negative operational inefficiencies. Additionally, inaccurate estimates can cause
unnecessary wear and tear on equipment, reducing the overall reliability of the station.

It seems that more and advanced predictive machine learning algorithms will be needed to solve these
problems. In many fields, machine learning shows promise in identifying complex patterns and relationships in data.
Using machine learning techniques to predict the operating patterns of deep water pumping stations increases the
accuracy of predictions, ensures optimum utilization and improves the operation of the whole.

Aim and Objective. The aim of this study is to analyze and develop a machine learning-based prediction
system that takes into account the interaction between underperformance, environment, and genetic information. In
this way, the research aims to solve the limitations of the estimation of the current deep-sea station; This will ultimately
lead to improved operational efficiency, reduced maintenance costs and environmental responsibility of external
resources.

The objectives of the research are:

1. Anovel ML comparison is created to predict how deep-sea pumping stations will operate.
2. Determining the variables that influence operating mode forecast accuracy in deep-sea environments.
3. Increased forecasting leads to better resource consumption, maintenance scheduling, and system efficiency.

Deep-sea resource extraction engineers, researchers, and industry experts will benefit greatly from the study's
findings, which will enhance operating protocols and ensure the long-term viability of deep-sea pumping station
operations.

Related work. Water delivery systems have been significantly improved by software and digital
technologies. The objective of scheduling and managing water supply systems with software-based solutions is to
optimize energy savings, minimize water loss, and save resources during the water distribution process. Although
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water treatment techniques can potentially result in significant energy savings, the focus of this section is on water
supply efficiency solutions. Conventional hydraulic modeling methods, like EPANET, are frequently employed to
analyze distribution network performance and allocate water needs from customers to calculation nodes. The United
States Environmental Protection Agency was the first to develop EPANET, a modeling software package for water
distribution networks. It simulates water distribution and hydraulics in pressurized pipe water systems It enhances
comprehension of water flow in distribution systems.

These software tools have been utilized in several projects that have developed water distribution systems
to meet the constant demand for water in various locations.

Several optimization strategies have been created, except commercial software packages, to boost the
efficacy of pump scheduling throughout the day by defining the exact hours of the day that the pump should be
switched on. This is because the operation of the system that supplies water has to be made more effective. The
implementation of genetic algorithms to reduce pumping operational costs by taking advantage of off-peak electricity
rates and space for storage in the water distribution system marked the beginning of efforts toward this method. In
order to provide water supply operational methods for reducing costs and using energy, heuristic and meta-heuristic
methodologies have also been integrated into software that is easily accessible, such as EPANET, and deployed in
actual water distribution networks. The aforementioned research has opened the door for data-driven solutions by
achieving notable savings in energy of up to 10% when comparing the consumption of energy to the energy used prior
to the execution of the suggested strategies [16].

Other studies have tried to integrate the water level into storage tanks with the pumping operation
optimization schedule problem. In order to control the water system, it is essential to manage both the pumping
schedules and trigger levels. Different trigger levels should be used at different times of the day in order to lower peak
pumping and pumping heads. 20% less energy is being used now that an algorithm based on evolution that
incorporates historical data and integer decision criteria has been implemented. Additionally, the fact that specific
regulations governing the management of water systems have been resolved. For example, pumping stations can now
be controlled under the water levels in different tanks, or tank levels and the time of day can both be taken into
consideration to minimize pumping throughout peak tariff periods [17-20].

The amount of data being generated these days is always increasing. Real-time data in the energy domain is
produced by Internet of Things technologies. Examples of this data include sensor-based data [21], efficiency
investment information [22], smart meters for energy consumption and RES production [23], and grid-based assets
like assets like transformer feeders [24]. Additionally, it is now easier to obtain data that may be used, such as power
or weather records, which opens up new possibilities for developing models and developing techniques for finding
patterns in data. It is also possible to obtain and utilize other data that isn't directly related to the energy sector,
including data from water pumps, in the algorithms that are developed. Without a doubt, each of these data sources
offers the potential for creating multiple scales and multi-stakeholder strategies through innovative analytics meant to
give energy stakeholders more solid and useful information, enhancing decision-making based on data [25].

The rapid progress of deep learning in recent years has led to a paradigm shift in methods of visual analysis.
Pumping station equipment pictures may be assessed using deep learning algorithms, which might lead to more
dependable and effective technical support for pumping station operations administration and maintenance. The first
deep learning method based on neural networks was presented by Ma X et al. [26], marking the start of the deep
learning era. The industry responded strongly to Alex Krizhevsky et al.'s creation of an AlexNet [27], which was based
on the architecture of the convolutional neural network (CNN) that won the ImageNet recognition competition.
To tackle the phenomenon of network models degrading after thorough training, A CNN ResNet built on the shortcut
design was presented by He and colleagues [28]. Deep learning models become more expressive and suitable for
difficult tasks as a result. Szegedy et al. at Google developed an Inception V4 that reduces the number of variables in
CNN and accelerates the algorithm's execution, based on Inception and Residual architecture [22]. The continued
progress in the area is leading to the proposal of a wider range of deep learning approaches. Recurrent neural networks
(RNNs), which recognize connections in sequence data and maintain the model's retention of prior knowledge, and
generative adversarial networks (GANS), which increase models' ability for generalization by increasing sample sizes,
are a few examples. Deep learning algorithms perform better in picture segmentation tasks when the Unet network is
used [28], Deep learning models may now more effectively capture distant dependencies thanks to the Transformer
network's solution to the disappearing and expanding gradient problem [29]. Additionally, LSTM is a special sort of
RNN that can learn dependence over time information [27]. Deep learning models may therefore be applied in a wide
range of fields, including as image recognition, speech recognition, and data analysis. Deep learning can be used for
visual analysis to achieve high precision and resilience while reducing the need for human feature extraction design
techniques after training on a large dataset [29].

Methodology. The study methodology's goals are to list, categorize, and evaluate the significant ML and DL
models that are applied to energy systems. As per our thorough analysis, implementing search queries using Thomson
Reuters Web-of-Science and Elsevier Scopus will guarantee that all papers inside the database satisfy the crucial
criteria of originality, high impact, and high h-index. Additionally, we sought to create four distinct categories—single
ML models, hybrid models, ensemble models, and DL—for the models utilized in energy systems in order to provide
a thorough analysis and comprehension of each modeling approach and its advancement. The initial database of
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pertinent articles is found in step 1 of the process utilizing the terms “energy system," "machine learning," "neural
network," "support vector”, "DT," "MLP," "ELM," "ensemble," and "deep learning." On the other hand, we performed
a fresh search query to match each ML approach appropriately. These searches will locate pertinent articles, but they
do not specify whether the ML model is part of an ensemble or a hybrid. Furthermore, not all of the articles in the
original database may be relevant. One or more single models may be included in a hybrid or ensemble machine
learning model. Because of this, the methodology's stages two and three are made to group the ML models into the
appropriate groups for the review. Step 4 involves classifying the models into four groups and setting them up in
distinct tables for individual inspection.

The research was primarily based on an extensive review of literature available through online databases,
IEEE Xplore, PubMed, ScienceDirect, SpringerLink, Google Scholar. Using the following methodology, a
guantitative approach was used to perform the research: thorough analysis of the body of research on current studies
and web resources.
assembling of deep-sea pumping station operating history data that was found in pertinent internet resources. using
statistical techniques and exploratory data analysis to choose important traits. An analysis of several machine learning
methods, such as linear regression, gradient boosting, random forests, neural networks, and support vector machines.
Model selection training, and validation using hyper-parameter adjustments. model performance is compared using
related measures.

Result and Discussion. Positive outcomes were obtained when deep-sea pumping station operating modes
were predicted using ML techniques; forecasts were significantly more accurate than those made using traditional
methods. After being trained on a large dataset comprising historical operational data, environmental factors, and
system features, the model demonstrated a high level of adaptability to the dynamic conditions typical of deep-sea
ecosystems.

Analysis of non-significant factors affecting the prediction accuracy of the performance model shows that
water level, temperature and pump performance have a significant impact on the prediction model. The machine
learning system can learn and adapt to the relationship between various components to provide more detailed and
context-aware predictions of pump performance. This predictive accuracy has important effects for forces, permitting
them to work flexibly and respond quickly to ecological changes.

Compared with traditional approaches, estimation of ML-based prediction procedures clearly shows their
benefits in precision and consistency. ML prototypes often overtake traditional predicting techniques, particularly
when conservational parameters change unexpectedly or unanticipated working problems occur. This displays that
ML has the probable to be a game-changer for the flexibility and sustainability of deep water operations.

The efficiency of the predicting structure is showed by its skill to rise production, lessen maintenance budgets,
and advance resource operation. The outcomes of the study illustration how significant it is to use ML techniques in
the deep-sea situation to establish a steady and long-term offshore operation in the ocean.

Evaluation and comparison of various ML algorithms to predict deep ocean station model performance:

1. Neural Networks:

e Strengths: Using NN to predict operational models of deep-sea stations is advantageous due to their ability
to capture non-linear associations in data. They can make very precise forecasts by classifying intricate outlines from
past data.

e Considerations: The results of NN training can be difficult and data intensive to interpret. Careful
architecture and hyper-parameter tuning are important to demonstrate performance.

2. Support Vector Machines (SVM):

e Strengths: SVM can handle high-dimensional data and adapt to new situations. Their ability to make
complex boundary decisions makes them ideal for documenting a variety of operations in the deep water region.

e Considerations: The choice of the kernel function can have a significant impact on the performance of
the SVM and should therefore be evaluated carefully. May be less defined than basic structure.

3. Random Forest:

e Strengths: An integrated algorithm that can perform many different operations, including random forests.
They have the ability to be the best, to be strong, and to catch different trends effectively. They work well in complex
dynamic systems that need to be predicted.

o Considerations: Random forests can be computationally expensive and their definition increases as the
number of trees in the set increases.

4. Gradient Boosting:

e Strengths: Using gradient boosting algorithms (such as XGBoost or LightGBM) can identify connections
and relationships in data. They generally provide excellent accuracy and handle large files well.

e Considerations: Hyper-parameters must be maintained carefully and, as usual, overfitting may occur if
they are not sufficient. Interpretations may be limited compared to simple models.

5. Linear Regression:

e Strengths: Linear regression provides interpretation and convenience. This can be useful when there are
many relationships between different columns. Serves as a standard model for comparison.
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e Considerations: Linear regression may have limited effectiveness in estimating complex functional
models due to its inability to capture nonlinear relationships.

Ultimately, the unique characteristics of the data, the complexity of the system, and the balance between
interpretation and model complexity will determine which machine learning is best for prediction: tower operating
models of deep stations. In this difficult situation, combination methods such as gradient boosting or combining
random forest results with simple model interpretation can provide the necessary strategies to obtain accurate and
efficient results.

Conclusion. Using machine learning algorithms to predict the performance of deep water facilities is a
revolutionary technology with the potential to improve safety and efficiency. This study demonstrates the advantages
and disadvantages of various machine learning algorithms such as neural networks, support vector machines, random
forests, gradient boosting and linear regression in predicting the dynamic behavior of deep stations.

The results demonstrate the effectiveness of learning models (particularly neural networks, random forests,
and gradient boosting) for capturing the interaction between operating parameters, environmental variables, and
historical data. These advanced algorithms demonstrate their ability to create detailed and adaptive features of deep-
water environments, demonstrating the advantages of traditional methods.

The key factors when choosing a machine learning algorithm are interpretability, computational efficiency,
and the need for accurate hyper-parameter tuning. Combining the advantages of various models, the integrated system
has become a possible way to achieve harmony between interpretation and reality. The importance of this study is
demonstrated by the fact that predictive methods developed by machine learning bring specific results in increasing
efficiency, reducing maintenance costs and optimizing resource use. The proposed model makes the operation of deep-
sea stations more stable and reliable, and this model enables a good decision to adapt to changes.

To further improve prediction, future research in machine learning will examine pruning techniques, data
augmentation, and real-time techniques. This research has laid the foundation for using new technologies to solve
unique problems arising from the deep ocean environment and opened the door to more powerful and efficient ways
of outsourcing.
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