
Науковий журнал "Комп’ютерно-інтегровані технології: освіта, наука, виробництво" 

Луцьк, 2024. Випуск № 54 

 

 

© Turchyn O. 

43 

DOI: https://doi.org/10.36910/6775-2524-0560-2024-54-05 

UDC: 004.8:004.738.5 

Turchyn Oleksandr Bohdanovych, Postgraduate Student 

https://orcid.org/0009-0001-5989-1712  

Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine 

 

PROGNOSTIC MODEL OF THE STATE OF GNSU USING BIG DATA ANALYSIS AND 

NEURAL NETWORKS 

 
Turchyn O. Prognostic Model of the State of GNSU Using Big Data Analysis and Neural Networks. This research 

aims at creation of a prognostic model for Global Navigation Satellite Systems (GNNS) by combination of big data analysis and 

refined neural networks. Problem solving comes to the front where we plan to improve the reliability and resiliency of satellite 

navigation systems with the help of data analytics and using both historical and real-time data. Methodology: Research 

methodologies cover the integrating of datasets on satellites telemetry, environment and historical system, involving processing 

and collection of the data systematically. Analyses of Big Data use to reveal hidden patterns inside GNSS data, moreover neural 

networks, and particularly deep learning networks are trained to recognize complex, nonlinear patterns which may possibly be 

symptoms of a problem. Result: The model exhibits a degree of disruption early on thus allowing us to take a proactive approach 

to the problem which reduces downtime and optimizes the system overall. The qualitative assessment involves criteria like 

accuracy, accuracy rate, recall, and F1 score which demonstrate the models capacity of non-GNSS prediction. By its design, the 

model is aligning with the development of GNSS technologies and raising new obstacles to be solved, so it will remain useful in 

changed environments. Conclusion: This research clearly shows that gap filling can be a possible solution whereby satellite 

navigation systems will be embedded with predictive capabilities regardless of the fast evolving technology environment. The 

results also demonstrate the ways GNSS may be applied for the development of new navigation service technologies, such as in 

the transport, mining and agriculture sectors. The model should be monitored and improved hardly, and adaptation to new problems 

is extremely important for the constant scalability and reliability of GNSS. 

Keywords: GNSU Prognostic Model, Big Data Analysis, Neural Networks, Comparison. 

 

Introduction. As their names suggest, predictive or prognostic models aim to forecast a variable's 

value based on a number of input factors. Prognostic models are defined in this study as those that: (1) 

employ time-series data as inputs; and (2) forecast the amount of the variable that is output at some future 

point in time, however the word may be used to refer to any model that connects input and output variables. 

The model may implicitly combine data from numerous sensors to produce reliable predictions since it is 

expected to that data from many different sensors will always be accessible as model inputs [1].   

In these kinds of models, the forecast time horizon is often fixed and implicit (that is, it isn't an 

explicit input). The input time-series can contain characteristics that have been retrieved from the data, such 

the main components of the measurements, or it can contain the raw observations that have not been treated 

in any way (to improve the ratio of signal to noise, for example) [2]. Prognostic models may be broadly 

classified into three subcategories: models that rely on physics, models that are driven by data, and hybrid 

models. Prognostic models based on physics make an effort to forecast the future outcome of the variable 

that is output by combining a physics model with measurable data. A set of ordinary differential equations 

or partial differential equations that represent the input-output connection from first principles might serve 

as the foundation for such a model [3]. A crack growth model like Paris' law, which predicts fatigue length 

of cracks as a relationship of time between the amount of fatigue rounds and the stress intensity component, 

is an instance of a physics-based prognostic model. When the process is well understood, physics-based 

models usually yield high-accuracy findings and need less data for tweaking [4]. But physics-based models 

are typically computationally costly, particularly when used for numerous deterioration modes or system-

level prognostic concerns. A well-known illustration of this is deterioration prognostics, where the 

challenge is to forecast how long a system will last before failing due to one of several different degradation 

mechanisms. It can be challenging and costly to develop and construct a physics-based prognostic model 

in the absence of prior knowledge about the precise deterioration pathway. There are concerns regarding 

the appropriateness of physical models since, even for a basic model, several assumptions and calculations 

are made during the model's production [5]. 

 Data-driven prognostic models do not take into account knowledge derived from first principles on 

the link between the input variables and the output; instead, they merely use observed data for predicting 

the value of the variable that is output. Data-driven approaches use patterns found in the data to build 

mathematical models that forecast the system's future states. The volume and caliber of accessible data that 

can be employed to infer model parameters determines how well data-driven techniques, such as statistical 

and machine learning techniques, perform [6].  
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The focus of machine learning (ML) techniques is on prediction rather than inferencing, which uses 

models to comprehend the data production process. This is the main distinction between ML and statistical 

approaches. The performance of these methods is dependent on the model's structure (number and number 

of layers, connectivity between layers), the algorithm for learning (e.g., Levenberg-Marquardt, Bayesian 

normalization, and gradient-based techniques), and the starting points of the model parameters (weights). 

Machine learning models are useful for uncovering encoded higher order relationships from data [7].   

The advantage of data-driven approaches is that they may be used to big, complicated systems; 

satisfactory results can be obtained without knowing every process or interaction. Data-driven approaches 

have a cheap creation cost and are simple to use [6]. Compared to physics-based models, models may be 

constructed quite rapidly after the data have been collected. However, data-driven models are not without 

problems. They need a lot of information on a lot of different conditions. The results generated are often 

very confident in the domain that the training data spans. Extrapolation and perhaps non-physical outcomes 

will ensue from any forecasts made outside of this area [8]. Run-to-failure statistics are necessary for their 

application in the development of deterioration models. For new or high-priority systems, data might not 

exist. Even in situations when run-to-failure data is available, choosing the right failure threshold can be 

challenging. Both data-driven and physics-based approaches have benefits and drawbacks, which hybrid 

approaches seek to balance for optimal outcomes [9]. 

Global Navigation Satellite System. Humans have developed a variety of positioning systems over 

the course of human evolution and civilization, and it could be argued that this was necessary in order for 

survival and competition against other animals possessing superior sensory organs, even before the 

introduction of the sophisticated Global Navigation Satellite System (GNSU) [4]. For example, when 

humans were hunter-gatherers, their developmental process might have been terminated long ago and they 

would have gone extinct if they weren't able to seek prey and other forms of sustenance. As individuals 

move further from their residences, they will require increasingly more precise positioning abilities, and 

developments in positioning considerably aid in extending their range of activities. Later, when humanity 

started to navigate the waters, for many years, devices like the sextant were created and used. It was created 

based on people's geometrical understanding and the error that can occur when using it, depending on the 

user's skill level and experience. Even though the Sextant was quite precise and excellent, there were 

situations in which it could not be used [10]. Radio position systems like the DECA, LORAN, and OMEGA 

were developed in response to the necessity for a precise location system that could function in all weather 

conditions. These are extremely low frequency electromagnetic waves. Navigation satellite systems, 

including the GPS and GLONASS, were developed as a result of advances in technology and aerospace 

technology [11]. 

Continuous, precise, and top-notch navigation signals must be provided by a navigation payload in 

order to deliver an accurate location service. However, the navigation information, information quality, and 

positioning accuracy are all impacted in the real satellite payload by the effect of non-ideal electronics.  The 

two primary types of information loss resulting from satellite payload are linear distortion brought on by 

devices like filters and multiplexers, and nonlinear distortion brought on by power amplification [12]. The 

embedded power amplifier typically has to operate close to the saturation point in order for the signal to 

create a relatively severe nonlinear distortion as it is amplified by the ground receiver in order to guarantee 

that the signal may have a suitably big signal to-noise ratio. the authority. When a signal with a broad 

bandwidth goes through the onboard filter, the band-limiting effect of the filter will clearly produce inter-

symbol interference. In wireless communication, digital pre-distortion technique is frequently employed. 

Pre-distortion technology for radio frequency power amplifiers, an essential component of wireless 

communication systems, has long been a contentious and controversial subject [13].  

Based on data from measurements, several academics have developed a variety of power amplifier 

models that are used for pre-distortion and power amplifier modeling. There is currently few research on 

modeling and pre-distortion of satellite payload RF channels as a whole, and the majority of studies on the 

non-ideal properties of onboard payloads are carried out individually on filters and high-power amplifiers. 

In actuality, it will be challenging to examine each component independently after the internal radio 

frequency channel's components are manufactured and connected [14]. 

Problem statement. The wide use of GNSS systems with exceptionally high accuracy in 

determining position and navigation in the whole world is an achievement that should be boasted of, but 

the problems with resilience of the whole system is the issue of the paramount importance. Incomplete 

geodetic networks, wrong measurement equipment and environmental factors including the local 



Науковий журнал "Комп’ютерно-інтегровані технології: освіта, наука, виробництво" 

Луцьк, 2024. Випуск № 54 

 

 

© Turchyn O. 

45 

electromagnetic conditions may all cause the GNSS performance failures, resulting in possible service 

cutoff as a result. Impose and notify existing solutions at present do not possess the advance capabilities 

that are needed for timely interventions. Due to this, there is a high priority on making the model concerning 

prognosis. It should involve big data analysis and NN (neural networks). To fill this gap, this research aims 

to predict and could prevent disrupting factors on GNSS operation, which consequently would improve the 

three-dimensional positioning systems and keep them resilient in face with new threaten. 

Related work. In the GNSU measurement domain, deep learning has mostly been employed in 

earlier work to identify inaccurate measurements or estimate pseud-orange uncertainty. The author of [15] 

suggests a method for detecting multipath, LOS, and NLOS data using a Support Vector Machine (SVM). 

Each measurement's signal-to-noise ratio, pseud-orange residuals, and pseud-orange rate residuals are 

combined to create a feature vector that is fed into the SVM. In comparison to a fixed detection threshold, 

the author demonstrates how the SVM increases the NLOS, LOS, and multipath detection rate. The authors 

of [16] use a Convolutional Neural Network (CNN) to detect multipath signals by leveraging the receiver 

correlator output to identify pertinent visual elements for each satellite measurement. [16] employ a blend 

of CNNs and Short-Term Memory (LSTM) for predicting pseud-orange uncertainty and satellite visibility. 

The authors' suggested LSTM architecture detects multipath signals by adjusting the number and 

sequence of GNSU measurements. Nevertheless, rather than concentrating directly on the GNSU 

positioning area, these earlier research [2, 9, 11] emphasize the use of deep learning in the GNSU 

measurement domain. Several prior studies have suggested calculating the pose (position and orientation) 

from sensor readings by estimating and correcting an initial pose assumption, which is in accordance with 

our proposed methodology.  

The authors of [17] suggest a localization method based on a LiDAR map of the surrounding area 

and a camera image measurement. Using an expected picture created from the LiDAR map and a learnt 

disparity between the camera image and the expected image, several DNNs are trained in this manner to 

iteratively correct an initial posture approximation. 

 The authors of [18] use paired image observations from a camera to create correction factors inside 

a Factor Graph. The relative posture between the two sets of photos is represented by the correction factor, 

which is derived using a DNN. Despite being discussed in the literature, the concept of estimating location 

using corrections to an initial approximation has not been applied to the challenge of GNSU-based 

positioning using deep neural networks, which is the focus of this work. 

Aim and objective. The following is the wording of the research objective for the study "Prognostic 

Model of the State of Global Navigation Satellite Systems Using Big Data Analysis and Neural Networks": 

The main goal of this project is to combine big data analysis with cutting-edge neural network techniques 

to create a reliable prognostic model for evaluating the condition of GNSU. The objective of the research 

is to utilize extensive information produced by GNSU, integrating diverse aspects such system anomalies, 

environmental conditions, and satellite performance metrics. With the goal to develop a predictive 

framework utilizing point-blank neural networks to address threats or disruptions as well as to indicate 

weaknesses of the functioning of GNSU, we regard our project as a worthwhile contribution. The purpose 

of our examination is accuracy prognostics of GNSU systems for providing systems with a more proactive 

and resilient approach. 

Methods. For the research project’s quantitative methodology, a broad literature review was carried 

out from the huge amount of research publications that were found in various online libraries with 2019-

2024 as the publication year. Through employing keywords, like "GNSU prognostic models," "big data 

analysis in satellite navigation," and "neural networks for system resilience," the study sough to extract 

tangible insights and methodologies used in similar studies. Specific focus was laid on applying the data-

centric views, statistical approaches and number-based methodologies towards building models that 

forecast the impairment caused by GNSUs. The literature surveying of the most recent period develops a 

base knowledge and sets the scene for the next stage in our research agenda - the analysis of quantitative 

findings. 

Result and discussion. The field of data analysis has rapidly evolved, changing the way we interpret 

and utilize amounts of information presenting new opportunities, across various industries. Research on the 

demonstrating of GNSU circumstances highlights the status of data analysis in accepting composite 

networks, designs and possible disturbances in the satellite navigation region [19]. 

GPS constellations and other GNSUs provide a wealth of real time data driven by factors such as 

satellite information, signal to noise ratios, ionospheric conditions and system health metrics. In this context 
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big data analysis involves collecting, managing and analyzing these datasets to extract valuable insights 

that could inform the development of effective predictive models [18] . 

The initial step in leveraging datasets for GNSU forecasts involves gathering of diverse data points. 

This process entails sourcing data, from satellite health monitoring, historical records of system anomalies 

environmental variables affecting signal propagation and other key factors. By integrating this combination 

into their research efforts analysts gain an understanding of the GNSU landscape and access a trove of 

information to uncover correlations and patterns. In order to guarantee the precision and dependability of 

the information a preprocessing and cleaning stage is carried out during the evaluation of data following 

the data collection phase. The data will not contain any meaningful, gaps or noise, should use statistical 

methods to improve the quality of the data. Following cleaning, data will be removed and segmented to 

identify factors affecting GNSU performance. This step is important to identify factors that may lead to 

interference [20]. 

In the context of GNSU forecasts, powerful machine learning and statistical algorithms form the 

basis of big data analysis. Time series analysis, clustering, regression analysis and other statistical methods 

are important for identifying important variables affecting GNSU behavior, determining differences 

between stems and sorting data correlation. In addition, machine learning algorithms can identify complex 

patterns and connections in large data sets that are difficult to understand with traditional methods [21]. 

The development of ML models especially neural networks(NN) is an important characteristic of big 

data processing in this arena. The GNSU model was used to train NN that can pretend nonlinear interactions 

and adjust to complex data. The learning procedure includes repeating the variables of the model until it 

forecasts the consequence based on the orders given. This step is significant to identify small problems in 

the data that may designate problems with future GNSU processes [22]. 

Insights generated by big data analytics can improve the overall predictive performance of predictive 

models. Researchers can increase the predictive power of the model by analyzing hidden connections and 

patterns to identify anomalies and intervene early. Finally, this technology improves GNSU's performance 

in the face of changing problems by enabling rapid response and mitigation. 

Aspect Description 

Objective Develop a prognostic model for assessing the state of Global Navigation Satellite 

Systems (GNSU) 

Methodology Integrates big data analysis and neural networks 

Data Collection Aggregation of extensive datasets, including satellite signals, signal-to-noise 

ratios, ionospheric conditions, and more 

Data 

Preprocessing 

Cleaning and enhancing data quality through statistical techniques, handling 

noise, outliers, and missing values 

Feature Extraction Identifying and highlighting relevant variables influencing GNSU performance 

through segmentation and extraction 

Statistical 

Analysis 

Utilizes advanced statistical methods, including time-series analysis, clustering, 

and regression analysis 

Machine Learning 

Models 

Employs neural networks, particularly deep learning architectures, for capturing 

complex, non-linear relationships 

Training Process Iterative adjustment of model parameters to accurately predict outcomes based on 

the provided GNSU data 

Predictive 

Capabilities 

Enhances the model's ability to predict potential disruptions, errors, or degradation 

in GNSU performance 

Early Detection Facilitates early detection of anomalies, enabling proactive measures to be taken 

for system resilience 

Applicability Explores scalability and adaptability of the model to evolving GNSU technologies 

and emerging challenges 

Benefits and 

Applications 

Contributes to the optimization of GNSU services by minimizing downtime and 

improving overall system performance 

Potential Impact Redefining the satellite navigation environment to make it more resilient and 

responsive to the dynamic technological environment 

This table propose a well-organized instant of the main findings of the study, emphasizing the data-

related procedures, methodology, and possible applications of big data analysis and neural networks in the 

Prognostic Model of GNSU. 
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Creating a Prognostic model for GNSU:  The process of building a predictive model for the 

current state of GNSU requires collecting data, organizing the data, building models, and evaluating them. 

Below I will briefly explain the process required to create the program. Note that the specific information 

and details of the GNSU system in question will determine the content of the application. 

1. Data Collection 

Representation and data collection are crucial to train a reliable evaluation model. The following 

information should be included in this file: 

• Satellite telemetry: Detailed information about the performance and health of individual 

satellites, such as hardware, signal strength, and other measures. 

• Environmental conditions: Information about solar activity, ionospheric conditions, and other 

environmental conditions that may affect GNSU signals. 

• Conduct history: Document past deficiencies, problems, or disruptions in the GNSU system.  

2. Data Preprocessing 

Prepare the collected data for training: 

• Data cleaning: Resolving incorrect data, inconsistent data, and missing values in the data. 

• Standardization/Standardization: Measure the number of features of the model to facilitate 

model training 

• Feature Engineering: Finding and obtaining relevant features that can impact GNSU efficiency. 

3. Model Development 

Neural networks are used in the predictive modeling process. The complexity of the problem will 

determine the design of the neural network. Temporal relationships in data can best be captured with deep 

learning such as short-term memory network (LSTM) or recurrent neural networks (RNN). 

Python code 

import tensorflow as tf 

from tensorflow.keras import layers, models 

 

# Define the neural network architecture 

model = models.Sequential([ 

    layers.Dense(64, activation='relu', input_shape=(num_features,)), 

    layers.Dense(32, activation='relu'), 

    layers.Dense(1, activation='sigmoid')  # Binary classification output (e.g., Healthy/Not 

Healthy) 

]) 

# Compile the model 

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) 

# Train the model 

model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_val, y_val)) 

4. Model Evaluation 

Evaluate the model's performance with a test set or validation dataset that was not used for training. 

Evaluation measures that are often used include F1 score, recall, accuracy, and precision. 

Python code 

# Evaluate the model on the test set 

loss, accuracy = model.evaluate(X_test, y_test) 

# Make predictions 

predictions = model.predict(X_test) 

5. Deployment and Monitoring 

Once the model is good enough, it can be used to make instant predictions of the GNSU situation. 

The model needs to be retrained periodically and constantly monitored to adapt to changes. The process of 

building a robust prognostic model is an iterative process in which the model design and hyper-parameters 

are adjusted based on test results. Additionally, for a successful deployed model requires a detailed 

understanding of the GNSU system and the unique challenges it faces. 

Conclusion. There is great possible to expand satellite navigation reliability and performance by 

using big data analytics and neural networks to develop prognostic models for current conditions of Global 

Navigation Satellite Systems (GNSU). This study aims to provide anticipatory measures for GNSU 
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maintenance by incorporating large datasets comprising ecological circumstances, functioning history, and 

satellite data with neural network architecture. 

Such proceedings are obtainable display the likelihood of initial recognition and intervention for 

timely interference and mitigation procedures. Big data analytics increases our understanding of the 

associations happening in the GNSU environment by enlightening data that influence else be ignored. The 

model's capability to adjust to GNSU technology and new challenges is key to its sustained efficiency in 

shifting operational situations. In addition to improving the reliability and power of GNSU, the proposed 

prediction model also has consequences for refining deployment and navigation in various fields. 

Continuous development of satellite systems requires constant evaluation, improvement and alteration to 

solve new difficulties. Finally, this research is a significant step towards a future in which navigation 

satellites are not only technically advanced, but also capable of predicting and examining for problems. 
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