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I'y6ans I''M. MaTtemaTnyHe MOJeJTIOBAaHHS IIBUAKOCTel GioxiMiunux mponeciB B Giooriunmux cucremax. Y crarti
BHKOHAHO MaTEMAaTHYHE MOJICIIOBAHHS IIBUAKOCTEH OlOXIMIYHHX MPOLECIB B OIOJNIOTIYHUX CHCTeMax. PO3MISHYTO 1 JIOCIIKEHO
TIPUKJIAT PePMEHTaTUBHUX PEaKIIii.

KurouoBi c1oBa: 6ioxiMigHMIA TIporec, epMeHTaTHBHA peakIlis, cucremMa JTudepeHniaTbHIX PiBHSHb.

I'yoans I''H. MaremaTuyeckoe MOAECJMPOBAHUE CKOPOCTell OHOXMMHMYECKHX TMPOLECCOB B  OHOJOIMYECKHX
cucreMax. B craThe BEBIIIOJHEHO MaTeMaTHYECKOE MOICIINPOBAHUE CKOpOCTeﬁ OHMOXUMHUYECKHUX TIpoueccoB B OHOJIOTMYECKHUX
cucteMax. PaccMOTpeHo 1 ucciiefoBaHo puMep (GepMEHTaTHBHBIX PEeaKInii.

KitroueBble cjioBa: OHOXMMIYECKHI TIporiece, pepMeHTaTHBHAS peakiys, cucTeMa quGepeHIHaTbHBIX ypaBHEHHUH.

Hubal H.M. Mathematical modeling of biochemical processes rates in biological systems. Mathematical modeling of
biochemical processes rates in biological systems is performed in the article. An example of enzymatic reactions is considered and
investigated.
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Formulation of the scientific problem. The processes that take place in living cells consist of a
large number of reactions catalyzed by various enzymes [1]-[3]. For mathematical modeling of these
biochemical processes in biological systems, it is necessary to construct systems of a large number of
nonlinear differential equations with the same large number of variables [4]-[6]. Even mathematical
modeling of individual chains of biochemical processes that consist of a large number of enzymatic reactions
is quite complex.

Research analysis. To solve these problems, it is necessary to make simplifications taking into
account some features of these reactions.

In the chain of reactions that take place in a living cell, the slowest reaction is determining. The
slowest reaction is determined by the lowest value of the velocities. In the chain of enzymatic reactions, the
reaction with the lowest maximum rate will be decisive (see the example of a chain of two consecutive
enzymatic reactions given below). When diffusing through several partitions, the determining link will be the
partition with the lowest diffusion coefficient. By the reaction rate, we mean the maximum rate of that
reaction.

Presentation of the main material and the justification of the obtained research results. To find
the determining link in the chain of biochemical reactions, it is necessary to find out how the rate of the
whole process, i.e. the rate of production of the last link, depends on the rates of individual reactions.
Obviously, when changing the maximum rates, any changes in the fast links will not affect the rate of the
whole process. The rate of the whole process is affected only by the slowest link.

When the rates of individual reactions in the chain of biochemical reactions differ by orders of
magnitude, i.e. by 10; 100 or more times, all fast reactions have time to reach equilibrium during the slowest
reaction.

Since enzymatic reactions have the properties of low inversion and saturation, even when the rates of
individual reactions differ little, the rate of the whole process depends only on the rate of the slowest link.
Therefore, changes in other faster reactions have almost no effect on the overall rate.

Let us prove this using the example of a chain of two consecutive enzymatic reactions:
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where
- the substrate S, combining with the enzyme F; (in the first reaction), forms the complex [FS], and
the final reaction product P, is the substrate (the initial product) of the second reaction;
- Sis the substrate of the first reaction;
-k, F, areenzymes;
- Kipq) is the absolute rate of decay of the complex [F;S] into the product B and the enzyme F ;

- K.y is the absolute reaction rate of the synthesis of the complex [FS];

- (1), (2) areindices that indicate, respectively, the first, second reaction.
In the reaction

[FS] <22 p 4+ R,
-2(1)

a short arrow in the opposite direction indicates that the reaction is slightly reversed.
Note that the reaction rate primarily depends on the probability of collision, for example, in the first

reaction of the substrate molecules S with the enzyme molecules F,. The probability of encountering these
molecules is proportional to the product of concentrations cg and CF, - Then the reaction rate of their
synthesis during the interaction is

Virs1 = KiaCRCs:

where
- Kyqqq is the absolute reaction rate of the synthesis of the complex [F;S], which takes into account
the average collision efficiency, depends on the temperature (which determines the rate of
molecules) and other factors;
- Cp is the concentration of the enzyme F (the concentration of the free enzyme F);

- Cg is the concentration of the substrate S.
By the effectiveness of the collision, we mean the formation, in this case, of a new complex
molecule of the complex of two molecules [FS] at the meeting (collision) of the molecule of the substrate S

with the molecule of the enzyme F.
Similarly, the rate of decay of the complex [F;S] is

VIRs]oR+s = Kamgrs)

where
- K.y is the absolute rate of decay of the complex [FS] into the substrate S and the enzyme F;

- QRS is the concentration of the complex [F;S] (the concentration of the bound enzyme F;).

Other rates of these two successive enzymatic reactions are similarly determined.

If the maximum rate of the second reaction is greater than the maximum rate of the first one, then the
rate of the process is determined by the first reaction. So, everything that is produced in the first reaction,
goes on without delay.

If, for example, the action of any inhibitors changes the rate of the second reaction, then taking into
account the irreversibility of the second reaction, the rate of the first reaction will not change if the rate of the
second reaction remains at least slightly higher than the first one. In this case, the rate of this whole process
can only be affected by inhibitors of the first reaction. Thus, in this case, the inhibitors of the first reaction
can control the rate of the whole process.

However, if the maximum rate of the second reaction is less than the first one, the intermediate
product will accumulate. If we do not take into account at least the weak inversion of the first reaction or any
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other ways of outflow of the product, the accumulation will continue indefinitely and a steady flow of the
process is impossible.

Thus, in this case, the reversal (at least weak) plays an important role and must be taken into account.

Thus, the concentration of the intermediate product will grow until its reverse flow is equal to the
difference between the inflow due to the first reaction and the outflow due to the second one. Therefore, a
large amount of this product will accumulate, i.e. its reserve.

In this case, the rate of the second reaction as a determining one due to saturation will not depend on
the concentration of the intermediate product and, therefore, on the values that affect the rate of the first
reaction. This will be as long as the rate of the first reaction is greater than the rate of the second reaction.

Thus, the inhibitor does not affect the rate of the whole process as long as the rate of reaction it
affects is not the lowest. However, when a certain concentration of the inhibitor is reached, when the rate of
the reaction it affects becomes less than the rate of other reactions, then a further increase in the
concentration of this inhibitor reduces the rate of the whole process. Then other inhibitors cease to act on the
rate of the whole process.

This course of biochemical processes in biological systems simplifies the research.

The problem of regulation and self-regulation is one of the most important for cells. The principle of
the lowest rate facilitates regulation, allows, in stationary conditions, to watch separate especially important
reactions despite others.

If this principle of the lowest rate did not work, the cell would need to monitor a large number of
different reactions simultaneously.

Obviously, the evolution of biological systems led to the selection of the connections between
processes that simplified and made more reliable the system of self-regulation.

The accumulation of the product reserve before the next link (as described above) ensures the
independent operation of this next link, making it quite autonomous and independent of other links of the
process. This principle of autonomy of individual links is also very important for self-regulating systems.

The presence of a product reserve leads to greater inertia of the system. When, under the action of
inhibitors, the accumulation of the product reserve occurs before another link, it switches to the second
mode. The larger the reserve, the slower this switch is.

To consider transient modes, it is necessary to consider nonstationary solutions of Kinetic equations.

The study of biological systems over time is quite complex. Even in simple biochemical processes in
biological systems, dozens of intermediate products interact. Therefore, mathematical models of these
processes contain dozens of equations.

To simplify mathematical models, it is necessary to reduce the number of variables and equations.
To do this, we can use the fact that the rates of individual reactions in biochemical processes are quite
different. There are mostly normal, fast, very fast, slow and very slow reactions. For example, if we are
interested in changes in the system that take place in a few minutes, then the processes that take place in
seconds and split seconds are considered fast and very fast, and the processes that take place in hours and
days are considered slow and very slow.

If we are interested in changes by seconds, then processes by minutes are considered to be slow.

Thus, we can divide reactions into such groups: a) and b). Note the following:

a) All concentrations that change slowly and very slowly can be considered to be constant and
equal to the initial value. Then in the equations the corresponding variables become
parameters and the number of equations decreases.

b) In fast and very fast reactions, stationary concentrations are established. Then the differential
equations describing these reactions are replaced by algebraic equations and the system of
differential equations is further simplified.

After these simplifications a) and b) only reactions proceeding at approximately the same rates will
remain.

Consider the following example.

Suppose that among N components of the biochemical process, there is a component with the

de,

concentration C;, that is formed very quickly (i.e. the rate e is very high), but is also consumed very

d
quickly. Otherwise, it would accumulate quickly. Then taking into account that the rate d_il is very high, for

this component, the differential equation can be written in the form:
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d
d_?: Mf, (¢, ¢, C5,-,CN) )
or
d
md_o-l-: fl(QI_!CZlCSV"’CN)’ (2)
t
where
1
m=—;
M

M is a very large number, i.e. M is much greater than one (M >>1) and, therefore, 0 <m <1, and
fi(c1,Cy,C5,...,Cy) s anormal rate in magnitude.

From differential equation (2), it is obvious that the rate d_(;l is very high, and the rate

f1(c1,Cy,C5,...,Cy) is anormal in magnitude.

Then according to b) given above, differential equation (2) can be replaced by the algebraic equation
that connects stationary concentrations:

ACHS W ) ©)

. . . dg, .
Note that, when replacing formula (2) by formula (3), it is taken into account that @ _ 0 since the

stationary concentration C; is a constant value.

From equation (3), we express C; through other variables. Thus, we reduce the number of

differential equations.
Let the concentration C;, at the initial moment of time t,, differ from its stationary value C; by a

small value Ac;. Then

¢, =G +Ac.

All other concentrations should be stationary, i.e. C,,Cs,...,Cy,at t=1;.
Then the function f;, at the moment of time t,, can be written in the form:

flzfl(q+Aq,62,63,...,6N) (4)

Let us decompose function (4) into a Taylor series on Ac; about the point C;. Taking into account

the smallness Ac;, we will limit ourselves to the first term of the series. Then taking into account formula
(3), we obtain:

_ _ _ _ _ of
fl(cl+Acl,cz,03,...,cN)zfl(cl,cz,c3,...,cN)+£ Ac, =0+ AAc, = AAg,  (5)
a=0
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Note that the partial derivative Si of the function f,(c,c,,C3,...,Cy) With respect to ¢, at the
Gt

point ¢, =C, istakenat ¢, =C,,C3 =Cz,...,C\ =Cy-
Substituting
CJ.:(T".I.-’_AC.L 1 fl(QI.’CZ’C3""’CN): fl(q.+AQL’621C31""CN)

into differential equation (1), we obtain:
d _ _ _ _
E(CL+A(>1) = Mfy (€ +Acy, Ty, T3,..., Ty ).

Then taking into account that C; is constant, and Ac; is variable, i.e. Ac; = Ac;(t), and formula (5), we
obtain:

£ A () =M 286,0). ©

Note that for simplification in formula (6), we put the sign = instead of the sign ~.
Let us write differential equation (6) in the following form:

A2aW) _ 741,
Acy (1)

Then

S RNTO0)

t
i =jM1m,
A (tp) Cl( ) t

whence at Ac;(t) >0 (and therefore, Ac(ty)>0), taking into account that M and A do not depend on t,
we get:

Acy (1)

t
m@qmmmm=mmh

or

In(Acy(t))—In(Aci(ty)) = MA(t—ty),

or

Ag(t) _ _
In A, (to) =MA(t-tp).

Hence, we obtain the solution of differential equation (6):

Ag(t) M A(t-to)
Acy(to)

or

Acy(t) = (Acy(ty) ) M), )
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If a steady state corresponding to equation (3) is stable, then over time (t increases) Ac(t)
decreases. Then (at the stable steady state) solution (7) of differential equation (6) takes on the form:

Acy(t) = (Acy(tg) ) e M), ®)

Thus, according to formula (8), establishment of the stable steady state corresponding to equation
(3), occurs because as | 4| — oo, the value Ac;(t) — 0.

The presence in formula (8) of a very large factor M in the exponent provides a very fast approach to
zero Acy(t) (i.e. Aci(t) — 0) and, therefore, very fast establishment of stationary value of the concentration
C, (i.e. ¢ (t) > C)) since ¢ (t) =T + Ay (t).

In biochemical processes, the rates of individual reactions are significantly different.

The fastest reactions in living cells are enzymatic.

The rate of the enzymatic reaction is characterized by the time of the enzymatic reaction zg that
depends on the number of revolutions of the saturated enzyme:

g 1

P c k
Foy +2(1)

where
C':0(1) =Cr tCRsy

Cg... is the initial concentration of the enzyme F; cg = =const;
0(1) 0()
Cr, is the concentration of the free enzyme F;
CRs] is the concentration of the bound enzyme F; (the concentration of the complex[F;S]).

The values 7 in different enzymes are quite different. They are from hundredths of a second to

minutes. Such a large difference between the rates makes it possible to distinguish fast and very fast
reactions in comparison with normal ones in the chain of enzymatic reactions. Then the rate of the chain of
reactions is determined by the slowest reactions. These times can be even a little longer due to the
accumulation of reserve.

The next step is the synthesis of macromolecules. These processes require much more time. The
attachment of only one amino acid to the protein chain or one nucleotide to the RNA or DNA chain takes a
few seconds, and there should be hundreds and thousands of such acts. In comparison with them, all purely
enzymatic processes can be considered to be very fast.

The longest processes are the construction of the working apparatus of the cell: ribosomes,
mitochondria, etc. The time required for this construction, in different biological organisms, is different:
from hours to days.

In unicellular organisms, the time of construction is basically of the same order as the period of
reproduction, i.e. lifetime. Thus, as soon as the cell apparatus is built and started working, the cell reproduces
again (divides).

In multicellular organisms, the cell lifetime in a stable state can be much longer than the cell
construction time. This is because in higher organisms, each cell lives not only for itself, but also performs
certain functions for the whole organism. The processes of cell construction are the most inertial, because
they are mainly associated with long delays in the body's response to external influences.

Thus, in any investigated time interval it is possible to allocate some main defining reactions and to
construct the system of differential equations for them.

In the mathematical study of such systems of differential equations, we can get important
information about biochemical processes that take place in cells.

However, it is often difficult or impossible to solve even simplified systems of differential equations
in analytical form accurately. Therefore, it is often sufficient to know only the basic qualitative
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characteristics of the solutions. These characteristics are valuable when comparing the results of
mathematical modeling of biochemical processes in biological systems with experimental ones.

Conclusions and prospects for further research. Mathematical modeling of biochemical processes
rates in biological systems is performed in the article. The example of enzymatic reactions is considered and
investigated.

A promising area of further research is mathematical analysis of qualitative characteristics of the
solutions of systems of differential equations that describe biochemical processes rates in biological systems.

Cnucok 6i6miorpadiunoro onucy
IL.K. Po6iuzon (2015) depmenTy: npuHIKMIG Ta 6GiorexHomoriuHe 3acrocyBanns. Essays Biochem., Ne 59, C. 1-41.
IT.K. Arapsan (2006) ®epMeHTH: iHTErpOBaHUI MOTJIS Ha CTPYKTYpy, AuHaMiky Ta ¢ynkuii. Microbial Cell Factories,
T. 5, Ne 2. https://doi.org/10.1186/1475-2859-5-2.
3. T. Manmep, ©.J1. Bounep (2007) @epmenmu: Gioximis, Giomexnonozis, kniniuna ximis. 2-re su., Woodhead Publishing.

N

4. B. emunosuy, B. Monenos (2008) Juppepenyuanvuvie ypasnenus. 3-¢ u3a., Cankr-IlerepOypr: Jlanb.

5. I.I'. 3imn (2017) Hepwuii xype 3 Oughepenyianvhux pieHsanb 3 dooamxamu o mooenrosanns. 11-te Bum., Cengage
Learning.

6. A. Crpazepc, M. Ilorrep (2019) Jupepenyianvui piensanns: ona Haykosyie ma inoxcenepis. 2-re BULL., Springer.

References
Robinson, P.K. (2015) Enzymes: principles and biotechnological applications. Essays Biochem., no. 59, P. 1-41.
2. Agarwal, P.K. (2006) Enzymes: an integrated view of structure, dynamics and function. Microbial Cell Factories, vol. 5,
no. 2. https://doi.org/10.1186/1475-2859-5-2.
3. Palmer, T. & Bonner, P.L. (2007) Enzymes: biochemistry, biotechnology, clinical chemistry. 2nd ed., Woodhead
Publishing.
Demidovich, B. & Modenov, V. (2008) Differential Equations. 3rd ed., Saint Petersburg: Lan.
Zill, D.G. (2017) A first course in differential equations with modeling applications. 11th ed., Cengage Learning.
Struthers, A. & Potter, M. (2019) Differential equations: for scientists and engineers. 2nd ed., Springer.

=

o gk~

© Hubal H.M.


https://doi.org/10.1186/1475-2859-5-2
https://doi.org/10.1186/1475-2859-5-2

