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MATHEMATICAL MODELING OF BIOCHEMICAL PROCESSES RATES IN BIOLOGICAL 

SYSTEMS 
  
Губаль Г.М. Математичне моделювання швидкостей біохімічних процесів в біологічних системах. У статті  

виконано математичне моделювання швидкостей біохімічних процесів в біологічних системах. Розглянуто і досліджено 
приклад ферментативних реакцій. 
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Губаль Г.Н. Математическое моделирование скоростей биохимических процессов в биологических 
системах. В статье выполнено математическое моделирование скоростей биохимических процессов в биологических 
системах. Рассмотрено и исследовано пример ферментативных реакций. 

Ключевые слова: биохимический процесс, ферментативная реакция, система дифференциальных уравнений. 
 
Hubal H.M. Mathematical modeling of biochemical processes rates in biological systems. Mathematical modeling of 

biochemical processes rates in biological systems is performed in the article. An example of enzymatic reactions is considered and 

investigated. 
Keywords: biochemical process, enzymatic reaction, system of differential equations. 

 

Formulation of the scientific problem. The processes that take place in living cells consist of a 

large number of reactions catalyzed by various enzymes [1]-[3]. For mathematical modeling of these 

biochemical processes in biological systems, it is necessary to construct systems of a large number of 
nonlinear differential equations with the same large number of variables [4]-[6]. Even mathematical 

modeling of individual chains of biochemical processes that consist of a large number of enzymatic reactions 

is quite complex.  
Research analysis. To solve these problems, it is necessary to make simplifications taking into 

account some features of these reactions. 

In the chain of reactions that take place in a living cell, the slowest reaction is determining. The 

slowest reaction is determined by the lowest value of the velocities. In the chain of enzymatic reactions, the 
reaction with the lowest maximum rate will be decisive (see the example of a chain of two consecutive 

enzymatic reactions given below). When diffusing through several partitions, the determining link will be the 

partition with the lowest diffusion coefficient. By the reaction rate, we  mean the maximum rate of that 
reaction.  

Presentation of the main material and the justification of the obtained research results. To find 

the determining link in the chain of biochemical reactions, it is necessary to find out how the rate of the 
whole process, i.e. the rate of production of the last link, depends on the rates of individual reactions. 

Obviously, when changing the maximum rates, any changes in the fast links will not affect the rate of the 

whole process. The rate of the whole process is affected only by the slowest link. 

When the rates of individual reactions in the chain of biochemical reactions differ by orders of 
magnitude, i.e. by 10; 100 or more times, all fast reactions have time to reach equilibrium during the slowest 

reaction. 

Since enzymatic reactions have the properties of low inversion and saturation, even when the rates of 
individual reactions differ little, the rate of the whole process depends only on the rate of the slowest link. 

Therefore, changes in other faster reactions have almost no effect on the overall rate. 

Let us prove this using the example of a chain of two consecutive enzymatic reactions: 

1(1) 2(1)

1(1) 2(1)
1 1 1 1[ ] ;
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k k
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where 

- the substrate S, combining with the enzyme 1F  (in the first reaction), forms the complex 1[ ]F S , and 

the final reaction product 1P  is the substrate (the initial product) of the second reaction;  

- S is the substrate of the first reaction;  

- 1F ,
 

2F  are enzymes; 

- 2(1)k  is the absolute rate of decay of the complex 1[ ]F S
 
into the product 1P

 
 and the enzyme 1F ; 

- 2(1)k  is the absolute reaction rate of the synthesis of the complex 1[ ]F S ; 

- (1), (2)  are indices that indicate, respectively, the first, second reaction. 

In the reaction  

2(1)

2(1)
1 1 1[ ]

k

k
F S P F





  ,
 

a short arrow in the opposite direction indicates that the reaction is slightly reversed. 

Note that the reaction rate primarily depends on the probability of collision, for example, in the first 

reaction of the substrate molecules S with the enzyme molecules IF . The probability of encountering these 

molecules is proportional to the product of concentrations Sc
 
and 

1Fc . Then the reaction rate of their 

synthesis during the interaction is  

1 1[ ] 1(1) ,F S F Sv k c c  

where  

- 1(1)k
 
is the absolute reaction rate of the synthesis of the complex 1[ ]F S , which takes into account 

the average collision efficiency, depends on the temperature (which determines the rate of 
molecules) and other factors; 

- 
1Fc  is the concentration of the enzyme 1F  (the concentration of the free enzyme 1F ); 

- Sc  is the concentration of the substrate S.  

By the effectiveness of the collision, we mean the formation, in this case, of a new complex 

molecule of the complex of two molecules 1[ ]F S  at the meeting (collision) of the molecule of the substrate S 

with the molecule of the enzyme 1F . 

Similarly, the rate of decay of the complex 1[ ]F S  is 

1 1 1[ ] 1(1) [ ],F S F S F Sv k c    

where 

- 1(1)k  is the absolute rate of decay of the complex 1[ ]F S
 
into the substrate S and the enzyme 1F ; 

- 
1[ ]F Sc   is the concentration of the complex 1[ ]F S  (the concentration of the bound enzyme 1F ). 

Other rates of these two successive enzymatic reactions are similarly determined. 

If the maximum rate of the second reaction is greater than the maximum rate of the first one, then the 

rate of the process is determined by the first reaction. So, everything that is produced in the first reaction, 

goes on without delay. 
If, for example, the action of any inhibitors changes the rate of the second reaction, then taking into 

account the irreversibility of the second reaction, the rate of the first reaction will not change if the rate of the 

second reaction remains at least slightly higher than the first one. In this case, the rate of this whole process 
can only be affected by inhibitors of the first reaction. Thus, in this case, the inhibitors of the first reaction 

can control the rate of the whole process. 

However, if the maximum rate of the second reaction is less than the first one, the intermediate 
product will accumulate. If we do not take into account at least the weak inversion of the first reaction or any 
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other ways of outflow of the product, the accumulation will continue indefinitely and a steady flow of the 
process is impossible. 

Thus, in this case, the reversal (at least weak) plays an important role and must be taken into account. 

Thus, the concentration of the intermediate product will grow until its reverse flow is equal to the 
difference between the inflow due to the first reaction and the outflow due to the second one. Therefore, a 

large amount of this product will accumulate, i.e. its reserve. 

In this case, the rate of the second reaction as a determining one due to saturation will not depend on 
the concentration of the intermediate product and, therefore, on the values that affect the rate of the first 

reaction. This will be as long as the rate of the first reaction is greater than the rate of the second reaction. 

Thus, the inhibitor does not affect the rate of the whole process as long as the rate of reaction it 

affects is not the lowest. However, when a certain concentration of the inhibitor is reached, when the rate of 
the reaction it affects becomes less than the rate of other reactions, then a further increase in the 

concentration of this inhibitor reduces the rate of the whole process. Then other inhibitors cease to act on the 

rate of the whole process. 
This course of biochemical processes in biological systems simplifies the research. 

The problem of regulation and self-regulation is one of the most important for cells. The principle of 

the lowest rate facilitates regulation, allows, in stationary conditions, to watch separate especially important 
reactions despite others. 

If this principle of the lowest rate did not work, the cell would need to monitor a large number of 

different reactions simultaneously. 

Obviously, the evolution of biological systems led to the selection of the connections between 
processes that simplified and made more reliable the system of self-regulation. 

The accumulation of the product reserve before the next link (as described above) ensures the 

independent operation of this next link, making it quite autonomous and independent of other links of the 
process. This principle of autonomy of individual links is also very important for self-regulating systems. 

The presence of a product reserve leads to greater inertia of the system. When, under the action of 

inhibitors, the accumulation of the product reserve occurs before another link, it switches to the second 

mode. The larger the reserve, the slower this switch is. 
To consider transient modes, it is necessary to consider nonstationary solutions of kinetic equations.  

The study of biological systems over time is quite complex. Even in simple biochemical processes in 

biological systems, dozens of intermediate products interact. Therefore, mathematical models of these 
processes contain dozens of equations. 

To simplify mathematical models, it is necessary to reduce the number of variables and equations. 

To do this, we can use the fact that the rates of individual reactions in biochemical processes are quite 
different. There are mostly normal, fast, very fast, slow and very slow reactions. For example, if we are 

interested in changes in the system that take place in a few minutes, then the processes that take place in 

seconds and split seconds are considered fast and very fast, and the processes that take place in hours and 

days are considered slow and very slow. 
If we are interested in changes by seconds, then processes by minutes are considered to be slow. 

Thus, we can divide reactions into such groups: a) and b). Note the following:  

a) All concentrations that change slowly and very slowly can be considered to be constant and 
equal to the initial value. Then in the equations the corresponding variables become 

parameters and the number of equations decreases. 

b) In fast and very fast reactions, stationary concentrations are established. Then the differential 
equations describing these reactions are replaced by algebraic equations and the system of 

differential equations is further simplified.  

After these simplifications a) and b) only reactions proceeding at approximately the same rates will 

remain. 
Consider the following example. 

Suppose that among N components of the biochemical process, there is a component with the 

concentration 1c , that is formed very quickly (i.e. the rate 1dc

dt
 is very high), but is also consumed very 

quickly. Otherwise, it would accumulate quickly. Then taking into account that the rate 1dc

dt
 is very high, for 

this component, the differential equation can be written in the form: 
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1
1 1 2 3( , , , , )N

dc
Mf c c c c

dt


 
 (1) 

or 

 

1
1 1 2 3( , , , , ),N

dc
m f c c c c

dt


 
 (2) 

where 

1
;m

M


 

M is a very large number, i.e. M is much greater than one  and, therefore, , and 

1 1 2 3( , , , , )Nf c c c c
  

is a normal rate in magnitude. 

From differential equation (2), it is obvious that the rate 1dc

dt  
is very high, and the rate 

1 1 2 3( , , , , )Nf c c c c  is a normal in magnitude. 

Then according to b) given above, differential equation (2) can be replaced by the algebraic equation 

that connects stationary concentrations: 

 
1 1 2 3( , , , , ) 0.Nf c c c c   (3) 

Note that, when replacing formula (2) by formula (3), it is taken into account that 1 0
dc

dt
  since the 

stationary concentration 1c  is a constant value. 

From equation (3), we express 1c
 

through other variables. Thus, we reduce the number of 

differential equations. 

Let the concentration 1c , at the initial moment of time 0t , differ from its stationary value 1c  by a 

small value 1c . Then  

1 1 1c c c  . 

All other concentrations should be stationary, i.e.  2 3, , , Nc c c , at 0t t . 

Then the function 1f , at the moment of time 0t , can be written in the form:  

 
1 1 1 1 2 3( , , , , ).Nf f c c c c c 

 
 (4) 

Let us decompose function (4) into a Taylor series on 1c  about the point 1c . Taking into account  

the smallness 1c , we will limit ourselves to the first term of the series. Then taking into account formula 

(3), we obtain: 

1 1

1
1 1 1 2 3 1 1 2 3 1 1 1

1

( , , , , ) ( , , , , ) 0 ,N N

c c

f
f c c c c c f c c c c c c c

c
 




        


 (5) 

where 

1 1

1

1

.

c c

f

c







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Note that the partial derivative 1

1

f

c




 of the function 1 1 2 3( , , , , )Nf c c c c  with respect to 1c

 
at the 

point 1 1c c  is taken at 2 2 3 3, , , .N Nc c c c c c    

Substituting 

1 1 1c c c 
   

і
   

1 1 2 3 1 1 1 2 3( , , , , ) ( , , , , )N Nf c c c c f c c c c c 
 

into differential equation (1), we obtain: 

1 1 1 1 1 2 3( ) ( , , , , ).N

d
c c Mf c c c c c

dt
      

Then taking into account that 1c  is constant, and 1c   is variable, i.e. 1 1( )c c t   , and formula (5), we 

obtain: 

 
1 1( ) ( ).

d
c t M c t

dt
    (6) 

Note that for simplification in formula (6), we put the sign   instead of the sign  . 
Let us write differential equation (6) in the following form: 

1

1

( ( ))
.

( )

d c t
M dt

c t





  

Then 

1

1 0 0

( )

1

1( )

( ( ))
,

( )

c t t

c t t

d c t
M dt

c t









 
 

whence at 1( ) 0c t   (and therefore, 1 0( ) 0c t  ), taking into account that M and   do not depend on t, 

we get: 

  1

01 0

( )

1 ( )
ln ( )

c t t

tc t
c t M t




 

 

 

or 

   1 1 0 0ln ( ) ln ( ) ( ),c t c t M t t      

or 

1
0

1 0

( )
ln ( ).

( )

c t
M t t

c t



 

  

Hence, we obtain the solution of differential equation (6): 

0( )1

1 0

( )

( )

M t tc t
e

c t

 


  

or
 

 
  0( )

1 1 0( ) ( ) .
M t t

c t c t e
 

    (7) 
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If a steady state corresponding to equation (3) is stable, then over time (t increases) 1( )c t  

decreases. Then (at the stable steady state) solution (7) of differential equation (6) takes on the form: 

 
  0| |( )

1 1 0( ) ( ) .
M t t

c t c t e
 

  
 

(8) 

Thus, according to formula (8), establishment of the stable steady state corresponding to equation 

(3), occurs because as | |  , the value 1( ) 0.c t   

The presence in formula (8) of a very large factor M in the exponent provides a very fast approach to 

zero 1( )c t  (i.e. 1( ) 0c t  ) and, therefore, very fast establishment of stationary value of the concentration 

1c  (i.e. 1 1( )c t c ) since 1 1 1( ) ( ).c t c c t   

In biochemical processes, the rates of individual reactions are significantly different.  

The fastest reactions in living cells are enzymatic.  

The rate of the enzymatic reaction is characterized by the time of the enzymatic reaction F  that 

depends on the number of revolutions of the saturated enzyme: 

0(1) 2(1)

1
,S

F
F

c

c k




   

where 

0(1) 1 1[ ];F F F Sc c c    

0(1)Fc  is the initial concentration of the enzyme 1F ; 
0(1)

const;Fc   

1Fc  is the concentration of the free enzyme 1F ; 

1[ ]F Sc  is the concentration of the bound enzyme 1F  (the concentration of the complex 1[ ]F S ). 

The values F  in different enzymes are quite different. They are from hundredths of a second to 

minutes. Such a large difference between the rates makes it possible to distinguish fast and very fast 

reactions in comparison with normal ones in the chain of enzymatic reactions. Then the rate of the chain of 

reactions is determined by the slowest reactions. These times can be even a little longer due to the 
accumulation of reserve. 

The next step is the synthesis of macromolecules. These processes require much more time. The 

attachment of only one amino acid to the protein chain or one nucleotide to the RNA or DNA chain takes a 
few seconds, and there should be hundreds and thousands of such acts. In comparison with them, all purely 

enzymatic processes can be considered to be very fast. 

The longest processes are the construction of the working apparatus of the cell: ribosomes, 
mitochondria, etc. The time required for this construction, in different biological organisms, is different: 

from hours to days. 

In unicellular organisms, the time of construction is basically of the same order as the period of 

reproduction, i.e. lifetime. Thus, as soon as the cell apparatus is built and started working, the cell reproduces 
again (divides). 

In multicellular organisms, the cell lifetime in a stable state can be much longer than the cell 

construction time. This is because in higher organisms, each cell lives not only for itself, but also performs 
certain functions for the whole organism. The processes of cell construction are the most inertial, because 

they are mainly associated with long delays in the body's response to external influences. 

Thus, in any investigated time interval it is possible to allocate some main defining reactions and to 
construct the system of differential equations for them. 

In the mathematical study of such systems of differential equations, we can get important 

information about biochemical processes that take place in cells. 

However, it is often difficult or impossible to solve even simplified systems of differential equations 
in analytical form accurately. Therefore, it is often sufficient to know only the basic qualitative 
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characteristics of the solutions. These characteristics are valuable when comparing the results of 
mathematical modeling of biochemical processes in biological systems with experimental ones. 

Conclusions and prospects for further research. Mathematical modeling of biochemical processes 

rates in biological systems is performed in the article. The example of enzymatic reactions is considered and 
investigated. 

A promising area of further research is mathematical analysis of qualitative characteristics of the 

solutions of systems of differential equations that describe biochemical processes rates in biological systems.  
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