20 Hayxosuii srcypuan "Komm 1oTepHO-1HTETpOBaH1 TEXHOJIOTI: OCBiTa, HayKa, BUPOOHUIITBO"
Jlyyvk, 2024. Bunyck Ne 57

DOI: https://doi.org/10.36910/6775-2524-0560-2024-57-03
YK 004.415.3

Pekh Petro, PhD

https://orcid.org/0000-0002-6327-3319

Hrygorychenko Vladyslav, master of science

Lutsk National Technical University, Lutsk, Ukraine

DEVELOPMENT OF THE SYSTEM FOR RECOGNITION OF CAR LICENSE PLATE USING
ARTIFICIAL INTELLIGENCE

Pekh P., Hrygorychenko V. Development of the system for recognition of car license plate using artificial
intelligence. The article proposes a technology for creating a license plate recognition system using artificial intelligence. The
license plate recognition program is developed in the PyCharm integrated development environment (IDE), which supports Python
and provides access to libraries for machine learning and image processing. Libraries for working with images and text, such as
OpenCV, imutils, pytesseract, and others, are installed through the PyCharm terminal. For the processing and recognition of license
plates, a set of images containing various car license plates was prepared. These images are made from different angles, with
different lighting and quality, which is caused by the need to ensure the appropriate response of the program to different input data
to ensure its correct operation. After loading the image using the OpenCV library, it is converted to grayscale, since contour
detection and image processing are much easier in grayscale. The Canny algorithm was used to detect contours. Contours in the
image are used for further identification of the license plate. Determination of horizontal and vertical contours was performed using
the Sobel operator. We use Tesseract OCR to recognize license plate text. After the license plate has been recognized, we compare
it with those in the database. After setting up the program, it is necessary to test it with different images to make sure the accuracy
of license plate recognition. This allows you to detect possible problems in the recognition process, such as low contrast of the
image, contamination of license plates or unstable lighting, tilting or distortion of license plates in the image, which can affect the
accuracy of recognition.

Keywords: License plate recognition, OpenCV, Tesseract OCR, Easy OCR.

Iex IL.A., I'puropnyenxo B.JO. Po3podka cucremMu po3ni3HaBaHHsI HOMEPHUX 3HAKIB 32c00aMH IITYYHOIO iHTEJIEKTY.
VY cTaTTi 3amponOHOBAaHO TEXHOJIOTII0 CTBOPEHHS CHCTEMH PO3IMi3HABAaHHA HOMEPHHX 3HAKiB 3aC00aMH IITYYHOTO IHTEJCKTY.
[Iporpama po3mi3HaBaHHS HOMEPHHX 3HaKiB po3pobieHa B iHTerpoBaHoMy cepenosuili po3podku (IDE) PyCharm, sxe miarpumye
Python Ta 3abe3neuye moctynm no 0i0mioTek Ui MAIIMHHOTO HaBYaHHA Ta 0OpoOku 300pakeHb. bibmioreku mns pobotu 3
300pakeHHSAMH Ta TeKcToM, Taki sk OpenCV, imutils, pytesseract, Ta iHIIIi, BCTAHOBIIOIOTHCA Yepe3 TepMinai PyCharm. [y o6poOxu
Ta po3Ii3HaBaHHsS HOMEPHHX 3HaKiB OyB MiAroTOBICHHUH Habip 300paXkeHsb, sIKi BIacHe MICTATH Pi3Hi aBTOMOO1IbHI HOMepHi 3Haku. L1i
300pakeHHsT BHKOHAHI 3 PI3HUX pPaKypCiB, 3 PI3HOI OCBITICHICTIO Ta SKICTIO, IO BUKJIMKAHE HEOOXiMHICTIO 3a0e3meucHHs
BIZIMOBIZTHOTO pearyBaHHs IIPOrpaMM Ha Pi3Hi BXiIHI JaHi 1uist 3a0e3nedyeHHs ii kopekTHoi pobotw. Ilicis 3aBaHTaXeHHs 300paKeHHS
3a gonoMororto 6i6miorexn OpenCV BOHO NEPETBOPIOETHCS Y BIATIHKU CipOT0, OCKITBKH AETEKILisl KOHTYPIiB Ta 00poOKa 300pakeHHs
3HAYHO MPOCTIillIa B Tpajamisx ciporo. /s BUSBIEHHA KOHTYpiB 3acTocoByBaBcsi anroputMm Canny. KoHTypu Ha 300paxkeHHI
BUKOPHCTOBYIOTBCS JUISl TTOJAJIBIIOTO BHSABICHHS HOMEPHOTO 3HAKa. BHW3HaueHHS TOPH30HTAIBPHUX Ta BEPTHKAIBHHX KOHTYpPIB
BHKOHYBAJIHCA 32 JONOMOT0I0 omeparopa Cobens. It po3mi3HaBaHHS TEKCTY HOMEPHOTO 3HaKa 3actocoByemo Tesseract OCR. ITicms
TOTO, IK HOMEpHHI 3HaK OyB pO3Mi3HAHUI, IIOPIBHIOEMO HOTO0 3 HAIBHUMU Y 0a3i gaHux. [Ticis 3aBepIeHHs HaAIMITYBaHHS IPOTPaMu
HEOoOXiZHO MPOBECTH 1 TECTYBaHHS 3 Pi3HUMH 300paXKEHHSMH, 1100 NMEepeKOHATHCh Y TOYHOCTI pO3Mi3HaBaHHS HOMEpHHX 3HakKiB. Le
JIO3BOJIIE€ BUSIBUTH MOXJIMBI NMpoOJieMH y TIpolieci po3mi3HaBaHHs, TakKi SIK HU3bKa KOHTPACTHICTh 300pakeHHs, 3a0pyJHEHHS
HOMEPHHUX 3HaKiB YM HecTaOiJbHE OCBITJICHHS, HAXWJ a00 CHOTBOPEHHS HOMEPHHUX 3HaKiB Ha 300pakeHHI, 10 MOXKE BIUTMBATH Ha
TOYHICTh PO3Mi3HABaHHSL.

Kiouosi cioBa: PosmizHaBanHs HoMepHuX 3HakiB, OpenCV, Tesseract OCR, Easy OCR

The problem statement. Automated license plate recognition (ALPR) systems have become widely
used in the areas of road safety, speed control, parking and other types of traffic monitoring. In the
conditions of the growing number of cars on the roads and the need to improve the efficiency of law
enforcement agencies, the issue of developing and improving such systems becomes urgent. In particular,
the application of machine learning methods allows to significantly improve the accuracy of number
recognition in difficult conditions, such as poor lighting, fast movement or different angles of the camera
[1,2,3,5].

In addition to the technical benefits, ALPR systems have a significant social impact, helping to
reduce traffic violations, improve pedestrian and driver safety, and improve the overall transportation
infrastructure. Thanks to the integration with other digital systems, such as vehicle registration databases
or access control systems, they become an integral part of modern smart cities [4,6].

The research purpose formulation. The purpose of the work is the development and research of
automated car license plate recognition systems based on machine learning methods, with an emphasis on
increasing its efficiency and accuracy in real operating conditions.

The latest research and publications analysis. Automated license plate recognition systems occupy
an important place in the field of intelligent transport systems. They are used in many industries, such as

© Pekh P., Hrygorychenko V.


https://orcid.org/0000-0002-6327-3319

Hayxosuil sicypruan "Komi 1oTepHO-iIHTETpOBaHi TEXHOJIOT1i: 0CcBiTa, HAyKa, BAPOOHHULITBO" 21
Jhyywk, 2024. Bunyck Ne 57

traffic control, parking lot security, parking violation monitoring, toll road and border automation, and law
enforcement. These systems make it possible to significantly reduce the time and resources needed to
perform these tasks, thanks to a high level of automation. That is why many scientists pay attention to the
development and research of these systems. [3,5,7]

The main research material presentation, Let’s consider the development of the license plate
recognition algorithm The virtual environment is an important component for the development and testing
of modern software systems, in particular for license plate recognition and computer vision tasks. In the
organization of such an environment, a special role is played by the selection of tools and libraries, as well
as software settings to achieve maximum results when implementing algorithms. Here are some key aspects
of setting up a virtual environment for license plate recognition tasks.

Choice of operating system and software. The first thing to do when organizing a virtual license plate
recognition environment is to determine the operating system and set of tools that will be used. The most
popular operating systems for such tasks are Linux and Windows, as they support most of the necessary
libraries and tools.

In most cases, the virtual development environment is configured using software tools such as Python
and OpenCV.

Python is a versatile tool for developing and testing machine learning systems thanks to numerous
libraries for working with computer vision and image processing.

OpenCV is a library for working with images and videos, which includes a wide set of functions for
image processing, such as filtering, contour detection, object selection, text recognition, etc.

Tesseract OCR is an optical text recognition that allows you to extract text from images (for example,
license plates from cars).

NumPy and Matplotlib are libraries for scientific computing and data visualization that are widely
used in image processing tasks.

Imutils is a utility library designed to make working with OpenCV easier. It contains functions for
quickly performing common operations such as resizing, rotating, automatically changing the orientation
of images or removing objects in a certain area of the frame. This library makes the code more compact
and easy to read.

EasyOCR is a modern library for text recognition based on deep learning. EasyOCR has built-in
neural network models that allow you to recognize text even on complex images with low quality, complex
backgrounds or text written in different languages. Due to its simplicity and power, this library is an
excellent choice for systems requiring high recognition accuracy.

To develop the program, we use the PyCharm integrated development environment (IDE). This
environment supports Python, provides auto-completion tools, built-in debuggers, and makes it easy to
work with libraries for machine learning and image processing. To install PyCharm, we download it from
the official website using the PyCharm Download link. After installation, open PyCharm and create a new
project, selecting the required version of Python.

Used libraries for working with images and text, such as OpenCV, imutils, pytesseract, and others,
can be installed through the PyCharm terminal. To do this, you need to execute the following commands.

To install the OpenCV library (Fig. 1) we run the command

pip install opencv-python.

For additional utilities that make working with OpenCV easier (imutils) we run the command

pip install imutils.

To configure optical text recognition (Tesseract OCR) via the pytesseract library, we use this
command

pip install pytesseract.

OpenCV is the main library for image processing, which includes functions for filtering, contour
detection, object selection, etc.;

imutils — auxiliary library for convenient scaling and rotation of images;

pytesseract — interface to Tesseract OCR for text recognition on images;

numpy is a library for working with arrays, often used to process image pixels;

winsound - a library for playing sounds in the Windows environment, used to inform about the found
license plate.

To use Tesseract OCR, you must also download and install it from the official repository on GitHub,
and then specify the path to the executable file in the code:

© Pekh P., Hrygorychenko V.



22 Hayxosuii srcypuan "Komm 1oTepHO-1HTETpOBaH1 TEXHOJIOTI: OCBiTa, HayKa, BUPOOHUIITBO"
Jhyyvk, 2024. Bunyck Ne 57

pytesseract.pytesseract.tesseract cmd = r"C:\Program
Files\Tesseract-OCR\tesseract.exe".

For license plate processing and recognition, it is necessary to prepare a set of images containing car
license plates. Images can be from different angles, with different lighting and quality, which requires
appropriate settings for optimal operation of contour detection and text recognition algorithms.

It is recommended to save images in a separate CarPictures/ folder to simplify file access (Fig. 1).

006.jpg 007.jpeg

s

010jpg

carjpg
Figure 1 — Folder CarPictures

To compare recognized license plates with registered ones, you can create a text file that will contain
a list of license plates. This file is stored in a separate folder, for example Database/Database.txt.

The first step is to load the image using the OpenCV library (Fig. 2). For this, we use the function
cv2.imread()

image = cv2.imread('CarPictures/10.jpg"').
Images can be reduced for ease of processing:
image = imutils.resize (image, width=500).

For more convenient processing, the image is converted to shades of gray, since contour detection
and image processing are much simpler in grayscale (Fig. 3):
gray = cv2.cvtColor (image, cv2.COLOR BGR2GRAY) .

Figure 3 — Gray Scale Image

Contour detection using Kenny's method. To detect contours, we use the Canny edge detection
algorithm. This method uses threshold values to extract strong gradients in the image corresponding to
contours, (Fig. 4):

canny edges = cv2.Canny(gray, 170, 200.

Contours in the image are used for further identification of the license plate.

Determination of horizontal and vertical contours using the Sobel operator.

The Sobel operator is used to select horizontal and vertical image gradients. It helps detect lines and
contours (Fig. 5):

© Pekh P., Hrygorychenko V.



Hayxosuil sicypruan "Komi 1oTepHO-iIHTETpOBaHi TEXHOJIOT1i: 0CcBiTa, HAyKa, BAPOOHHULITBO" 23
Jhyywk, 2024. Bunyck Ne 57

sobel x = cv2.Sobel (gray, cv2.CV_64F, 1, 0, ksize=3);
sobel y = cv2.Sobel (gray, cv2.CV_64F, 0, 1, ksize=3);

sobel combined = cv2.magnitude (sobel x, sobel y).

Figure 4 — Canny dg Figure 5 — Sobel Eds B

Searching for a probable license plate. Using the cv2.findContours() method, contours on the image
are detected (Fig. 6):

cnts, = «c¢v2.findContours (canny edges.copy(), cv2.RETR LIST,
cv2.CHAIN APPROX SIMPLE) .

In order to find a probable license plate, the shape of the contours is checked. A license plate usually
has a rectangular shape, so we are looking for a contour with four sides (Fig. 7):

approx = cv2.approxPolyDP (i, 0.02 * perimeter, True);

if len (approx) ==

If the contour found meets the requirements, the license plate
image is cropped and saved:

cv2.imwrite (‘plate.png’, crp img).

Text recognition using OCR. To recognize text from a license plate, we use Tesseract OCR. We
use the pytesseract.image_to_string() function, which extracts text from a cropped image of a license plate:
text = pytesseract.image to string(crop img loc, lang=‘eng’).

Checking the number in the database. After the license plate has been recognized, we compare it
with the data in the database. To do this, we use the function that searches for a license plate in a text file:

def check if string in file(file name, string to search);

with open(file name, 'r') as file;

for line in file;

if string to search in line;

return True;

return False.

If the number plate is found in the database, the system emits a signal (for example, via
winsound.Beep):

winsound.Beep (frequency, duration).

After the system setup is complete, it is necessary to test with different images to ensure the
accuracy of license plate recognition. This will reveal possible problems such as low contrast, dirty license
plates or unstable lighting. Depending on the test results, it may be necessary to adjust the contour detection
parameters or OCR settings to improve the performance of the system in different conditions. It is also
important to consider factors such as the tilt or distortion of license plates in the image, as this can affect
the accuracy of the recognition.

This step ensures the integration of all system components, allowing automatic detection of license
plates in images and checking them against the database.

Here's a step-by-step description of how to build an EasyOCR-based system that performs text-to-
image recognition using OpenCV and Matplotlib. Our code already includes the main steps, and we will
add a scientific description of each step.

© Pekh P., Hrygorychenko V.



24 Hayxosuii srcypuan "Komm 1oTepHO-1HTETpOBaH1 TEXHOJIOTI: OCBiTa, HayKa, BUPOOHUIITBO"
Jhyyvk, 2024. Bunyck Ne 57

Before starting work, we need to install all the necessary libraries for working with images, such
as OpenCV, EasyOCR, NumPy and Matplotlib (Fig. 8).

Fgure 6 — Final Image with Détected Plate

.AH 5840 CM

. ’ 0 200 400 600 800
Figure 7 — Final Image Figure 8 — Conversion to grayscale

pip install opencv-python easyocr matplotlib numpy imutils.

The image is loaded using the OpenCV library:

img = cv2.imread (r’F:\mag\imaged.jpg’) .

To reduce the complexity of the image, before processing, we apply the conversion to grayscale:

gray = cv2.cvtColor (img, cvZ2.COLOR BGR2GRAY) .

Applying a filter to reduce noise: To improve the quality of the image, we apply a two-sided filter.

bfilter = cv2.bilateralFilter(gray, 11, 17, 17).

Edge detection using Canny: We use an edge detector to detect objects in the image.

edged = cv2.Canny(bfilter, 30, 200).

Search for contours: Using cv2.findContours, we search for contours in the image.

keypoints = cv2.findContours (edged.copy (), cv2.RETR TREE,
cv2.CHAIN APPROX SIMPLE) .

Definition of rectangular contours: Define contours that resemble the shape of a license plate (four
corners).

for contour in contours;

approx = cv2.approxPolyDP (contour, 10, True);

if len(approx) == 4;

location = approx;

break.

Highlighting the license plate: Create a mask to highlight the license plate on the image (Fig. 9.).

mask = np.zeros(gray.shape, np.uint8);

new image = cv2.drawContours (mask, [location], 0.255, -1);

new image = cv2Z.bitwise and(img, img, mask=mask) .

Image cropping for recognition: Crop the area of the license plate for further text recognition (Fig.
10).

) (x, y) = np.where (mask == 255);
cropped image = gray[xl:x2+1, yl:y2+1].

© Pekh P., Hrygorychenko V.



Hayxosuil sicypruan "Komi 1oTepHO-iIHTETpOBaHi TEXHOJIOT1i: 0CcBiTa, HAyKa, BAPOOHHULITBO" 25
Jhyywk, 2024. Bunyck Ne 57

z§0H§82 FKL]

100

Figure 10 - Cropping of a license plate

100

200

400

500

600

700

200 400 600 800
Figure 9 - Selection of license plate

Text recognition using EasyOCR. We use the EasyOCR library to recognize text from a cropped

image:

reader = easyocr.Reader ([‘'en’]);

result = reader.readtext (cropped image) .

Result display. We display the result on the image by drawing a rectangle and adding the recognized
text:

font = cv2.FONT HERSHEY SIMPLEX;

res = cv2.putText (img, text=text, org= (approx[0][0][0],
approx[1]1[0][1] + 60), fontFace=font, fontScale=1, color= (0, 255, 0),
thickness=2).

These steps enable license plate recognition from images using EasyOCR and OpenCV for
preprocessing.

Conclusion and prospects for further research. The developed model for recognizing car license
plates takes into account the specifics of image processing in real-world environments, such as changing
lighting, sign pollution, and a variety of shooting angles.

The review of modern approaches to license plate recognition revealed the main trends in the use
of machine learning methods, in particular convolutional neural networks (CNN), which demonstrate high
efficiency in computer vision tasks.

References
1. Face, H. 2020. Trocr. https://huggingface.co/docs/ transformers/en/model_doc/trocr (nara 3Bepuenns 14.09.2024).
2. Buzzelli, M. and Segantin, L. « Revisiting the compcars dataset for hierarchical car classification: New annotations,
experiments, and results» 2021.
3. Cherti, M., Beaumont, R., Wightman, R., Wortsman, M., Ilharco, G., Gordon, C., Schuhmann, C., Schmidt, L., and
Jitsev, J. «Reproducible scaling laws for contrastive language-image learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition» 2023.
4. Dosovitskiy, A. «An image is worth 16x16 words: Transformers for image recognition at scale» 2020.
S. Henry, C., Ahn, S. Y., and Lee, S.-W. «Multinational license plate recognition using generalized character sequence
detection» 2020.
6. Hu, M., Bai, L., Fan, J., Zhao, S., and Chen, E. «Vehicle color recognition based on smooth modulation neural
network with multi-scale feature fusion. Frontiers of Computer Science» 2020.
7. Kemertas, M., Pishdad, L., Derpanis, K. G., and Fazly, A. «Rankmi: A mutual information maximizing ranking loss.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition» 2020.

© Pekh P., Hrygorychenko V.



